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Short Summary
● We focus on a fork-join task parallel programming 

model.
● “Cut-off” is an optimization technique for task parallel 

programs to control granularity.
● Previous cut-off systems have been dynamic, and 

have issues and limitations (detailed later.)

Keyword: divide-and-conquer



3

Short Summary
● We focus on a fork-join task parallel programming 

model.
● “Cut-off” is an optimization technique for task parallel 

programs to control granularity.
● Previous cut-off systems have been dynamic, and 

have issues and limitations (detailed later.)
● We propose a static cut-off method and further 

compiler optimization techniques based on it.
● Evaluation shows good performance improvement.

– 8x speedup on average compared to the original.

Keyword: divide-and-conquer
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Importance of Multi-threading
● The number of CPU cores is increasing.
● Multi-threading is an essential idea to exploit modern 

processors.

→ A task parallel model is one of the most promising
     parallel programming models.
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Task Parallel Programming Models
● Task parallelism is a popular parallel programming model.

– Adopted by many famous systems/libraries:
● e.g., OpenMP (since ver. 3.0), Cilk / Cilk Plus, Intel TBB …

● It has two major features:
– Dynamic load balancing
– Suitability for divide-and-conquer algorithms

● In this talk, we focus on a “fork-join task parallel model.”

Intel Cilk Plus

Cilk

Intel TBB
* Each image is from their official pages.



7

Fork-join Task Parallelism
● We use program examples given in Cilk syntax.
● Two basic keywords are provided to express

task parallelism: spawn and sync.
– Spawn (≒ fork) : create a task as a child, which will be 

executed concurrently.
– Sync (≒ join) : wait all tasks created (or spawned) by itself. 

void vecadd(float* a, float* b, int n){
  for(int i = 0; i < n; i++)
    a[i] += b[i];
}

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}Same meaning.
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Fork-join Task Parallelism
● We use program examples given in Cilk syntax.
● Two basic keywords are provided to express

task parallelism: spawn and sync.
– Spawn (≒ fork) : create a task as a child, which will be 

executed concurrently.
– Sync (≒ join) : wait all tasks created (or spawned) by itself. 

● The main target is a divide-
and-conquer algorithm.
– e.g., sort, FFT, FMM, AMR,

        cache-oblivious GEMM

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
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Overheads of Task Parallel Program
● In general, task parallel runtime is designed to handle 

fine-grained parallelism efficiently.
● However, extreme fine granularity imposes large 

overheads, degrading the performance.
void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

This vecadd is a too fine-grained task;
one leaf task only calculates *a += *b.
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Overheads of Task Parallel Program
● In general, task parallel runtime is designed to handle 

fine-grained parallelism efficiently.
● However, extreme fine granularity imposes large 

overheads, degrading the performance.

● Cut-off has been known as an effective optimization 
technique.

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

This vecadd is a too fine-grained task;
one leaf task only calculates *a += *b.
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Cut-off: An Optimization Technique
● Cut-off is a technique to reduce a tasking overhead by 

stop creating tasks in a certain condition.
– i.e., execute a task in serial in that condition.

● Programmers commonly
apply it manually.

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

void vecadd(float* a, float* b, int n){
  if(1<= n && n <=1000){
    vecadd_seq(a, b, n);
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
//Sequential version of vecadd 
void vecadd_seq(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    /*spawn*/vecadd_seq(a, b, n/2);
    /*spawn*/vecadd_seq(a+n/2, b+n/2, n-n/2);
    /*sync;*/
  }
}

Cut-off A cut-off condition

Call a sequential vecadd
if 1 <= n && n <= 1000
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Cut-off + Further Optimizations

● In addition to reducing tasking overheads, further 
transformations are applicable to serialized tasks
in some cases.

void vecadd(float* a, float* b, int n){
  if(1 <= n && n <= 4096){
    vecadd_seq(a, b, n);
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
void vecadd_seq(float* a, float* b, int n){
  for(int i = 0; i < n; i++)
    a[i] += b[i];
}

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

2. Transformation

1. Cut-off

vecadd_seq() is loopified.
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Cut-off + Further Optimizations

● In addition to reducing tasking overheads, further 
transformations are applicable to serialized tasks
in some cases.

void vecadd(float* a, float* b, int n){
  if(1 <= n && n <= 4096){
    vecadd_seq(a, b, n);
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
void vecadd_seq(float* a, float* b, int n){
  for(int i = 0; i < n; i++)
    a[i] += b[i];
}

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

2. Transformation

1. Cut-off

vecadd_seq() is loopified.

● Automatic cut-off addresses these problems.
– Find a cut-off condition automatically.
– Serialize a task function after a cut-off.
– And, even optimize the serialized function

                   ... by just writing naïve task parallel programs.
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Our Proposal: Static Cut-off
● We propose a compiler optimization technique of an 

automatic cut-off including further optimizations for 
task parallel programs without any manual cut-off.

void vecadd(float* a, float* b, int n){
  if(1 <= n && n <= 4096){
    vecadd_seq(a, b, n);
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
void vecadd_seq(float* a, float* b, int n){
  // Vectorize the following for-loop,
  // since task keywords implicitly reveal
  // each iteration is independent.
  for(int i = 0; i < n; i++)
    a[i] += b[i];
}
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Our Proposal: Static Cut-off
● We propose a compiler optimization technique of an 

automatic cut-off including further optimizations for 
task parallel programs without any manual cut-off.

– Compiler optimizations
for simple loops have
been well developed.

● Loop blocking, unrolling
interchange, etc...

→ Develop optimizations
for divide-until-trivial tasks.

void vecadd(float* a, float* b, int n){
  if(1 <= n && n <= 4096){
    vecadd_seq(a, b, n);
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
void vecadd_seq(float* a, float* b, int n){
  // Vectorize the following for-loop,
  // since task keywords implicitly reveal
  // each iteration is independent.
  for(int i = 0; i < n; i++)
    a[i] += b[i];
}

Let's say divide-until-trivial task parallel programs.
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Dynamic Cut-off (1/2)
● Most previous studies on automatic cut-off [*1,*2,*3] 

focus on adaptive cut-off (dynamic cut-off)
– Dynamic cut-off is a technique not creating tasks when 

runtime information tells task creation is not beneficial.
● Runtime information:

a total number of tasks, task queue length, execution 
time, depth of tasks, frequency of work stealing etc...

[*1] Bi et al. An Adaptive Task Granularity Based Scheduling for Task-centric
       Parallelism, HPCC '14, 2014
[*2] Duran et al. An Adaptive Cut-offfor Task Parallelism, SC '08, 2008
[*3] Thoman et al. Adaptive Granularity Control in Task Parallel Programs
       Using Multiversioning, Euro-Par'13, 2013

Related Work
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Related Work

State-of-the-art Dynamic Cut-off
● One proposed by Thoman et al. [*] is state-of-the-art.

– For each spawns, call/create either

1. an original task

2. a task inlined some times

3. a fully serialized task

which is decided by
runtime information.

● e.g., task queue length

...

spawn vecadd(a, b, n/2);

Original
task

Task
inlined
twice

Fully
serialized

task

Task
inlined
once

1 2 3

Selection using runtime information

If tasks are likely to exist abundantly,
it runs a fully serialized task instead.

[*] P. Thoman et al. Adaptive granularity control in task parallel programs using  
     multiversioning. Euro-Par '13, 2013
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Dynamic Cut-off (2/2)
● Most previous studies on automatic cut-off [*1,*2,*3] 

were dynamic cut-off.
– Dynamic cut-off is a technique serializing tasks when 

runtime information tells task creation is not beneficial.
● Compared to dynamic cut-off, our static cut-off has

two major advantages.

1. Cost to evaluate a cut-off condition is low.

2. More aggressive optimizations are likely to be applied.
[*1] Bi et al. An Adaptive Task Granularity Based Scheduling for Task-centric
       Parallelism, HPCC '14, 2014
[*2] Duran et al. An Adaptive Cut-offfor Task Parallelism, SC '08, 2008
[*3] Thoman et al. Adaptive Granularity Control in Task Parallel Programs
       Using Multiversioning, Euro-Par'13, 2013

Related Work

Dynamic cut-off advantage:
wider applicable range.
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Key Idea: Cut-off Near Leaves
● Aggregate tasks near leaves.

+ Low risk of serious loss of parallelism. 

+ Chance to apply powerful compiler optimizations 
    after cut-off.

● Our compiler tries to determine a condition under 
which the recursion stops within a certain height.

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2
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n=1 n=0

n=2

n=3

n=1

n=6

n=7

n=2

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4

Encircled by                
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Height of Task
● Consider a task tree of fib(16) below.

fib calculates
   

– Height is difficult to obtain, but it is
suitable for a cut-off condition.

n=1 n=0
n=2

n=3
n=1 n=1 n=0

n=2
n=4

n=5

n=1 n=0
n=2

n=3
n=1

n=6

n=7

n=2
n=1 n=0

n=2
n=3

n=1 n=1 n=0
n=2

n=4

n=2 n=9

n=14 n=15
n=16(root)

Depth

Height

void fib(int n, int* r){
  if(n < 2){
    *r = n;
  }else{
    int a, b;
    spawn fib(n-1, &a);
    spawn fib(n-2, &b);
    sync;
    *r = a + b;
  }
}

Fn  =
n                  if n < 2
Fn-1 + Fn-2   otherwise

Cut-off in ”height < 3”
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Transformation Flow

1. Try to obtain a cut-off condition.

2. Optimize a task after cut-off.

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

void vecadd(float* a, float* b, int n){
  if(1 <= n && n <= 1024){
    vecadd_seq(a, b, n);
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
void vecadd_seq(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    vecadd_seq(a, b, n/2);
    vecadd_seq(a+n/2, b+n/2, n-n/2);
  }
}

Input
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Transformation Flow

1. Try to obtain a cut-off condition.

2. Optimize a task after cut-off.

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

void vecadd(float* a, float* b, int n){
  if(1 <= n && n <= 10000){
    vecadd_opt(a, b, n);
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
void vecadd_opt(float* a, float* b, int n){
  for(int i = 0; i < n; i++)
    a[i] += b[i];
}
a  
a
a
a

Input



24

How to Implement it?

1. Try to obtain a cut-off condition.

→ Try to calculate “the Hth termination condition”
      the condition in which a task ends within a height H.

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4H: Height

Key idea.

For example, the 2nd termination
condition of fib is “n <= 3”
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How to Implement it?

1. Try to obtain a cut-off condition.

→ Try to calculate “the Hth termination condition”
      the condition in which a task ends within a height H.

2. Optimize task after cut-off.

→  Compiler optimizations:
      apply one of them.

  1. Static task elimination

  2. Code-bloat-free inlining

  3. Loopification

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4H: Height

Key idea.

+ Reduce function-calling overheads.

+ Simplify control flow.                           

+ Reduce tasking overheads.                
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Static Cut-off Flow
● Our developed system...

1. calculates the Hth termination condition.

2. decides a height H using heuristics.

3. applies one of the compiler optimizations:
●        Static task elimination
●        Code-bloat-free

       inlining
●        Loopification

Try to identify
the Hth termination condition.

Try to apply
loopification.

Try to apply code-
bloat-free inlining.

Static task
elimination

Dynamic cut-off

Loopification

Code-bloat-free
inlining

Failed

Failed

Static cut-off

Succeeded

Succeeded

Succeeded Failed

2

1

3

3a

3b

3c

1 2

3a3b

3c
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Termination Condition
● Consider a fibonacci task.

– Compute as
● (0th) termination condition is

a condition in which tasks never
create a child task.

void fib(int n, int* r){
  if(n < 2){
    *r = n;
  }else{
    int a, b;
    spawn fib(n-1, &a);
    spawn fib(n-2, &b);
    sync;
    *r = a + b;
  }
}

Fn  =
n                  if n < 2
Fn-1 + Fn-2   otherwise

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4

n=5

n=1 n=0

n=2

n=3

n=1

fib(n=6)

fib(n=7)

n=2

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4

These tasks  themselves never create a child,
so n < 2 is a termination condition.

1



28

Hth Termination Condition
● Consider a fibonacci task.

– Compute as
● Hth termination condition is

a condition in which tasks only
create a child task within a height H.

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4

n=5

n=1 n=0

n=2

n=3

n=1

fib(n=6)

fib(n=7)

n=2

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4

Fn  =
n                  if n < 2
Fn-1 + Fn-2   otherwise

void fib(int n, int* r){
  if(n < 2){
    *r = n;
  }else{
    int a, b;
    spawn fib(n-1, &a);
    spawn fib(n-2, &b);
    sync;
    *r = a + b;
  }
}

The tasks create a task at most within height 2,
so n < 4 is a 2nd termination condition.

Height

1
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Termination Condition Analysis
● A 0th termination condition is a condition

in which tasks never create children.
– A simple basic block analysis tells n < 2 is such a 

condition for fib example.
● An Hth termination condition is

recursively calculated by using
an (H-1)th termination condition.
– It requires a simple algebra solver.

void fib(int n, int* r){
  if(n < 2){
    *r = n;
  }else{
    int a, b;
    spawn fib(n-1, &a);
    spawn fib(n-2, &b);
    sync;
    *r = a + b;
  }
}

1
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Determining Cut-off Height H
● Basically, choose the larger H.

a. a height which makes the number of cycles after
    cut-off is less than 5000 cycles.

● Task creation takes approximately 100 cycles.

● We use the LLVM's cost function for estimation, which is 
not so accurate, but seems sufficient for this use.

b. 4 (constant)

2

It is a minimum cut-off height.

It is designed for very
fine-grained tasks.

CPU Frequency Task Creation Time 

Intel Xeon E7540 2.0GHz 36.0 [ns/task]

AMD Opteron 6380 2.5GHz 44.9 [ns/task]

Intel Xeon E5-2695 v2 2.4GHz 21.5 [ns/task]

Intel Xeon E5-2699 v3 2.3GHz 33.8 [ns/task]

[*] MassiveThreads https://github.com/massivethreads/massivethreads

Binary Task Creation 
(Height = 27) on 
MassiveThreads[*]
with one core.
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void vecadd(float* a, float* b, int n){
  if(Hth Termination Condition){
    vecadd_seq(a, b ,n);
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
void vecadd_seq(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    /*spawn*/vecadd_seq(a, b, n/2);
    /*spawn*/vecadd_seq(a+n/2, b+n/2, n-n/2);
    /*sync;*/ 
  }
}

Static Task Elimination
● If a compiler identifies H and calculates an Hth 

termination condition, the simplest cut-off is applicable.

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

3a

Just remove spawn and sync
in the Hth termination condition.
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General Inlining

● General inlining incurs
code bloat.
– Divide-and-conquer 

tasks often have more 
than one recursive calls.

3b

void vecadd(float* a, float* b, int n){
  if(Hth Termination Condition){
    vecadd_seq(a, b ,n);
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
void vecadd_seq(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    /*spawn*/vecadd_seq(a, b, n/2);
    /*spawn*/vecadd_seq(a+n/2, b+n/2, n-n/2);
    /*sync;*/ 
  }
}

Inlining vecadd_seq() almost
doubles the code size.
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void vecadd_seq(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    for(int i = 0; i < 2; i++){
      float *a2, *b2; int n2;
      switch(i){
      case 0:
        a2=a;     b2=b    ; n2=n/2;   break;
      case 1:
        a2=a+n/2; b2=b+n/2; n2=n-n/2; break;
      }
      vecadd_seq(a2, b2, n2); 
    }
  }
}

Code-bloat-free Inlining(1/2)

1. Delay execution of
    spawned tasks to
    corresponding sync.

3b

void vecadd_seq(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    for(int i = 0; i < 2; i++){
      float *a2, *b2; int n2;
      switch(i){
      case 0:
        a2=a;     b2=b    ; n2=n/2;   break;
      case 1:
        a2=a+n/2; b2=b+n/2; n2=n-n/2; break;
      }
      vecadd_seq(a2,b2,n2);
    }
  }
}
a
a
a
a
a
a
a
a
a
a
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Code-bloat-free Inlining(2/2)

1. Delay execution of
    spawned tasks to
    corresponding sync.

2. In the Hth termination
    condition, inlining H
    times can remove the
    innermost recursive calls.

3b

void vecadd_seq(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    for(int i = 0; i < 2; i++){
      float *a2, *b2; int n2;
      switch(i){
      case 0:
        a2=a;     b2=b    ; n2=n/2;   break;
      case 1:
        a2=a+n/2; b2=b+n/2; n2=n-n/2; break;
      }
      //Inline vecadd_seq(a2,b2,n2)
      if(n2 == 1){
        *a2 += *b2;
      }else{
        //Never executed in the 1st condition.
        /* for(int i2 = 0; i2 < 2; i2++){
          float *a3, *b3; int n3;
          [...];
          vecadd_seq(a3,b3,n3);
        } */
      }
    }
  }
}

These recursive calls are never called
in the 1st termination condition.
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Loopification: Goal
● Try to convert recursion into a loop.

3c

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

void vecadd(float* a, float* b, int n){
  if(Hth Termination Condition){
    vecadd_seq(a, b ,n);
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
void vecadd_loop(float* a, float* b, int n){
  for(int i=0; i<n; i++)
    a[i] += b[i];
}

Desired final result.
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Assumed input.

Loopification: Idea(1/2)
● The target task needs to have a recursion block in 

non-termination condition.
– A recursion block is required to have no side-effects

but creating tasks.

–            : leaf function
–            : recursion block

3c

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

void f(a, b, c, ...){
  if(...){
    //Leaf function.
    L(a, b, c, ...);
  }else{
    //Recursion block.
    /*spawn*/f(a0 , b0 , c0 , ...);
    /*spawn*/f(a1 , b1 , c1 , ...);
    ...
    /*sync*/
  }
}

Blocks executed in
a termination condition.
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Loopification: Idea(2/2)

1. Generate loop candidates by assigning a certain
     termination condition and estimating the loop form.
– The loop element is assumed to be a leaf function.

2. Then, check the equivalence of a loop candidate
     and recursion (induction)

3c

void vecadd_candidate1(float* a, float* b, int n){
  for(int i=0; i<n; i++){
    leaf_function(a + i, b + i, /**/);
  }
}

This verification is valid only
in a *th termination condition.

Please check our paper for details.
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Why Loopification?
Why don't you use loop-parallelism in the first place?

→ We believe there are two merits:
– A divide-and-conquer strategy can be written as cache-

oblivious style, suitable for modern hierarchical memory.
● e.g.,  matrix multiplication, and stencil computation

– Our loopification also
vectorizes a loop utilizing
dependency information
revealed by task keywords.

void heat2d(array2d a, array2d b) {
  [...];
  if (sizex(a)==1 && sizey(b)==1) {
    ax = a[i-1,j]-2*a[i,j]+a[i+1,j];
    ay = a[i,j-1]-2*a[i,j]+a[i,j+1];
    b[i,j] = a[i,j]+K*(ax+ay);
  } else {
    spawn heat2d(div11(a), div11(b));
    spawn heat2d(div12(a), div12(b));
    spawn heat2d(div21(a), div21(b));
    spawn heat2d(div22(a), div22(b));
    sync;
  }
}

2D divide-and-conquer
achieves better cache locality.

3c
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If Analysis Fails → Dynamic Cut-off
● Termination condition analysis sometimes fails

for various reasons.
– e.g., Pointer-based

         tree traversal.
–

● In that case, our system applies the dynamic cut-off
as a fallback strategy.
– We adopted the state-of-the-art dynamic cut-off 

proposed by Thoman et al. [*]

It's difficult to identify
the simple “Hth termination condition”

void treetraverse(TREE* tree){
  if(tree->left==0&&tree->right==0){
    calc(tree);
  }else{
    if(tree->left)
      spawn(treetraverse(tree->left));
    if(tree->right)
      spawn(treetraverse(tree->right));
    sync;
  }
}

[*] P. Thoman et al. Adaptive granularity control in task parallel programs using  
     multiversioning. Euro-Par '13, 2013
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Summary of Static Cut-off
● Our developed system...

1. calculates an Hth termination condition.

2. decides a height H using heuristics.

3. applies one of the compiler optimizations:
●        Static task elimination
●        Code-bloat-free

       inlining
●        Loopification

4. adopts dynamic cut-off 
    if analysis (      ) fails.

Try to identify
the Hth termination condition.

Try to apply
loopification.

Try to apply code-
bloat-free inlining.

Static task
elimination

Dynamic cut-off

Loopification

Code-bloat-free
inlining

Failed

Failed

Static cut-off

Succeeded

Succeeded

Succeeded Failed

2

1

3

3a

3b

3c

1 2

3a3b

3c

4
1

4
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Implementation & Environment
● We implemented it as an optimization pass

on LLVM 3.6.0.

Modified MassiveThreads[*1], a lightweight work-
stealing based task parallel system adopting the child-
first scheduling policy[*2].

● Experiments were done on dual sockets of Intel Xeon 
E5-2699 v3 (Haswell) processors (36 cores in total).
– Use numactl --interleave=all to balance physical 

memory across sockets

[*1] MassiveThreads https://github.com/massivethreads/massivethreads
[*2] Mohr et al., Lazy Task Creation: A Technique for Increasing the Granularity of
        Parallel Programs, LFP '90, 1990
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Benchmarks
● 15 benchmarks were prepared for evaluation.

– All are divide-until-trivial task parallel programs.

Applicability・fib
・nqueens
・fft
・sort
・nbody
・strassen
・vecadd
・heat2d

・heat3d
・gaussian
・matmul
・trimul
・treeadd
・treesum
・uts

Only dynamic cut-off
is applicable to them.
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How to Read?
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– Y-Axis: Relative performance over ■ base (divide-until-trivial)

■ dynamic: dynamic cut-off proposed by Thomans et al.
■ static: all - loopification - code-bloat-free inlining
■ cbf: all - loopification
■ loop: all 
■ proposed: the total performance
■ seq: sequential (not task-parallelized)

Only show the results 
if static / cbf / loop

is applicable.
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Only show the results 
if static / cbf / loop

is applicable.

How to Read?
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– Y-Axis: Relative performance over ■ base (divide-until-trivial)

■ dynamic: dynamic cut-off proposed by Thomans et al.
■ static: all - loopification - code-bloat-free inlining
■ cbf: all - loopification
■ loop: all 
■ proposed: the total performance
■ seq: sequential (not task-parallelized)

?
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Roughly speaking, How to Read?
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– Y-Axis: Relative performance over ■ base (divide-until-trivial)

■ dynamic: dynamic cut-off proposed by Thomans et al.
■ static: static task elimination if applicable
■ cbf: code-bloat-free inlining if applicable
■ loop: loopification if applicable
■ proposed: our proposal (the right chart      )
■ seq: not task-parallelized

Try to identify
the Hth termination condition.

Try to apply
loopification.

Try to apply code-
bloat-free inlining.

Static task
elimination

Dynamic cut-off

Loopification

Code-bloat-free
inlining

Failed

Failed

Static cut-off

Succeeded

Succeeded

Succeeded Failed
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Single-threaded Performance (1/3)

● Cut-off (■ & ■) improved performance overall.
● Compared to ■ dynamic cut-off, 

■ our proposed cut-off achieved higher performance.
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Single-threaded Performance (2/3)
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● Performance of ■ static was better than ■ dynamic if 
termination condition analysis succeeded.
– Evaluation of a cut-off condition inserted at compile 

time is less expensive than that of dynamic cut-off.
– ■ static achieved comparable performance of ■ seq.

Static task elimination successfully
reduced tasking overheads in most cases.
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Single-threaded Performance (3/3)

● Performance was furthermore improved
if ■ cbf / ■ loop was applicable.

● As a result, ■ our proposal achieved 11.2x speedup
(from 1.1x to 333x) on average over original task 
parallel programs. 
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Multi-threaded Performance

– Multi-threaded performance (36 cores) is similar to 
single-threaded one.

● ■ Our proposal achieved 8.0x speedup (from 1.1x to 
220x) on average over original task parallel programs. 
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vs. Loop Parallel Programs
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Our proposal.

● Compared to loop parallel programs.
– ■ task: task parallel programs optimized by our proposal.
– ■ omp: programs just inserted #omp parallel for.
– ■ omp_optimized: OpenMP ones hand-tuned carefully.

– ■ polly: programs automatically parallelized by Polly [*].
Tuning attributes (collapse, chunk size, scheduling etc) and loop blocking.

[*] Grosser et al., Polly - Polyhedral optimization in LLVM., IMPACT '11, 2011.
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vs. Loop Parallel Programs
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Our proposal.

● Performance of ■ task was comparable to that of
■ omp and ■ polly.

● ■ Optimized OpenMP version was fastest, however.
– One reason is that the recursive cache blocking is

not so flexible as to fit the exact cache size.

Even faster in some cases.
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0. Short Summary
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4. Conclusion
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Conclusion
● We propose a compiler optimizing divide-until-trivial 

task parallel programs using the Hth termination 
condition analysis.
– Further optimizations are developed based on the 

analysis. 
● The evaluation shows the efficacy of the proposed 

automatic cut-off.
Future work: 
・Widen the applicable range of loopification.
・Adopt better heuristics (or totally new
    methods) to determine a height H.


