
1

A Static Cut-off
for Task Parallel Programs

Shintaro Iwasaki, Kenjiro Taura
Graduate School of Information Science and Technology

The University of Tokyo

September 12, 2016 @ PACT '16

2

Short Summary
● We focus on a fork-join task parallel programming

model.
● “Cut-off” is an optimization technique for task parallel

programs to control granularity.
● Previous cut-off systems have been dynamic, and

have issues and limitations (detailed later.)

Keyword: divide-and-conquer

3

Short Summary
● We focus on a fork-join task parallel programming

model.
● “Cut-off” is an optimization technique for task parallel

programs to control granularity.
● Previous cut-off systems have been dynamic, and

have issues and limitations (detailed later.)
● We propose a static cut-off method and further

compiler optimization techniques based on it.
● Evaluation shows good performance improvement.

– 8x speedup on average compared to the original.

Keyword: divide-and-conquer

4

Index

0. Short Summary

1. Introduction
– What is task parallelism?
– What is a “cut-off”?
– Related work: dynamic cut-off

2. Proposal: Static Cut-off

3. Evaluation

4. Conclusion

5

Importance of Multi-threading
● The number of CPU cores is increasing.
● Multi-threading is an essential idea to exploit modern

processors.

→ A task parallel model is one of the most promising
 parallel programming models.

2000 2003 2005 2008 2011 2014
1

10

100

CP

U
 C

or
es

2
4
8

60
of CPU cores is increasing.

From CPU DB (http://cpudb.stanford.edu/)

6

Task Parallel Programming Models
● Task parallelism is a popular parallel programming model.

– Adopted by many famous systems/libraries:
● e.g., OpenMP (since ver. 3.0), Cilk / Cilk Plus, Intel TBB …

● It has two major features:
– Dynamic load balancing
– Suitability for divide-and-conquer algorithms

● In this talk, we focus on a “fork-join task parallel model.”

Intel Cilk Plus

Cilk

Intel TBB
* Each image is from their official pages.

7

Fork-join Task Parallelism
● We use program examples given in Cilk syntax.
● Two basic keywords are provided to express

task parallelism: spawn and sync.
– Spawn (≒ fork) : create a task as a child, which will be

executed concurrently.
– Sync (≒ join) : wait all tasks created (or spawned) by itself.

void vecadd(float* a, float* b, int n){
 for(int i = 0; i < n; i++)
 a[i] += b[i];
}

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}Same meaning.

8

Fork-join Task Parallelism
● We use program examples given in Cilk syntax.
● Two basic keywords are provided to express

task parallelism: spawn and sync.
– Spawn (≒ fork) : create a task as a child, which will be

executed concurrently.
– Sync (≒ join) : wait all tasks created (or spawned) by itself.

● The main target is a divide-
and-conquer algorithm.
– e.g., sort, FFT, FMM, AMR,

 cache-oblivious GEMM

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

9

Overheads of Task Parallel Program
● In general, task parallel runtime is designed to handle

fine-grained parallelism efficiently.
● However, extreme fine granularity imposes large

overheads, degrading the performance.
void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

This vecadd is a too fine-grained task;
one leaf task only calculates *a += *b.

10

Overheads of Task Parallel Program
● In general, task parallel runtime is designed to handle

fine-grained parallelism efficiently.
● However, extreme fine granularity imposes large

overheads, degrading the performance.

● Cut-off has been known as an effective optimization
technique.

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

This vecadd is a too fine-grained task;
one leaf task only calculates *a += *b.

11

Cut-off: An Optimization Technique
● Cut-off is a technique to reduce a tasking overhead by

stop creating tasks in a certain condition.
– i.e., execute a task in serial in that condition.

● Programmers commonly
apply it manually.

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

void vecadd(float* a, float* b, int n){
 if(1<= n && n <=1000){
 vecadd_seq(a, b, n);
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}
//Sequential version of vecadd
void vecadd_seq(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 /*spawn*/vecadd_seq(a, b, n/2);
 /*spawn*/vecadd_seq(a+n/2, b+n/2, n-n/2);
 /*sync;*/
 }
}

Cut-off A cut-off condition

Call a sequential vecadd
if 1 <= n && n <= 1000

12

Cut-off + Further Optimizations

● In addition to reducing tasking overheads, further
transformations are applicable to serialized tasks
in some cases.

void vecadd(float* a, float* b, int n){
 if(1 <= n && n <= 4096){
 vecadd_seq(a, b, n);
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}
void vecadd_seq(float* a, float* b, int n){
 for(int i = 0; i < n; i++)
 a[i] += b[i];
}

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

2. Transformation

1. Cut-off

vecadd_seq() is loopified.

13

Cut-off + Further Optimizations

● In addition to reducing tasking overheads, further
transformations are applicable to serialized tasks
in some cases.

void vecadd(float* a, float* b, int n){
 if(1 <= n && n <= 4096){
 vecadd_seq(a, b, n);
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}
void vecadd_seq(float* a, float* b, int n){
 for(int i = 0; i < n; i++)
 a[i] += b[i];
}

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

2. Transformation

1. Cut-off

vecadd_seq() is loopified.

● Automatic cut-off addresses these problems.
– Find a cut-off condition automatically.
– Serialize a task function after a cut-off.
– And, even optimize the serialized function

 ... by just writing naïve task parallel programs.

14

Our Proposal: Static Cut-off
● We propose a compiler optimization technique of an

automatic cut-off including further optimizations for
task parallel programs without any manual cut-off.

void vecadd(float* a, float* b, int n){
 if(1 <= n && n <= 4096){
 vecadd_seq(a, b, n);
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}
void vecadd_seq(float* a, float* b, int n){
 // Vectorize the following for-loop,
 // since task keywords implicitly reveal
 // each iteration is independent.
 for(int i = 0; i < n; i++)
 a[i] += b[i];
}

15

Our Proposal: Static Cut-off
● We propose a compiler optimization technique of an

automatic cut-off including further optimizations for
task parallel programs without any manual cut-off.

– Compiler optimizations
for simple loops have
been well developed.

● Loop blocking, unrolling
interchange, etc...

→ Develop optimizations
for divide-until-trivial tasks.

void vecadd(float* a, float* b, int n){
 if(1 <= n && n <= 4096){
 vecadd_seq(a, b, n);
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}
void vecadd_seq(float* a, float* b, int n){
 // Vectorize the following for-loop,
 // since task keywords implicitly reveal
 // each iteration is independent.
 for(int i = 0; i < n; i++)
 a[i] += b[i];
}

Let's say divide-until-trivial task parallel programs.

16

Index

0. Short Summary

1. Introduction

2. Proposal: Static Cut-off
– What cut-off condition is used?
– How about further optimizations after cut-off?

3. Evaluation

4. Conclusion

17

Dynamic Cut-off (1/2)
● Most previous studies on automatic cut-off [*1,*2,*3]

focus on adaptive cut-off (dynamic cut-off)
– Dynamic cut-off is a technique not creating tasks when

runtime information tells task creation is not beneficial.
● Runtime information:

a total number of tasks, task queue length, execution
time, depth of tasks, frequency of work stealing etc...

[*1] Bi et al. An Adaptive Task Granularity Based Scheduling for Task-centric
 Parallelism, HPCC '14, 2014
[*2] Duran et al. An Adaptive Cut-offfor Task Parallelism, SC '08, 2008
[*3] Thoman et al. Adaptive Granularity Control in Task Parallel Programs
 Using Multiversioning, Euro-Par'13, 2013

Related Work

18

Related Work

State-of-the-art Dynamic Cut-off
● One proposed by Thoman et al. [*] is state-of-the-art.

– For each spawns, call/create either

1. an original task

2. a task inlined some times

3. a fully serialized task

which is decided by
runtime information.

● e.g., task queue length

...

spawn vecadd(a, b, n/2);

Original
task

Task
inlined
twice

Fully
serialized

task

Task
inlined
once

1 2 3

Selection using runtime information

If tasks are likely to exist abundantly,
it runs a fully serialized task instead.

[*] P. Thoman et al. Adaptive granularity control in task parallel programs using
 multiversioning. Euro-Par '13, 2013

19

Dynamic Cut-off (2/2)
● Most previous studies on automatic cut-off [*1,*2,*3]

were dynamic cut-off.
– Dynamic cut-off is a technique serializing tasks when

runtime information tells task creation is not beneficial.
● Compared to dynamic cut-off, our static cut-off has

two major advantages.

1. Cost to evaluate a cut-off condition is low.

2. More aggressive optimizations are likely to be applied.
[*1] Bi et al. An Adaptive Task Granularity Based Scheduling for Task-centric
 Parallelism, HPCC '14, 2014
[*2] Duran et al. An Adaptive Cut-offfor Task Parallelism, SC '08, 2008
[*3] Thoman et al. Adaptive Granularity Control in Task Parallel Programs
 Using Multiversioning, Euro-Par'13, 2013

Related Work

Dynamic cut-off advantage:
wider applicable range.

20

Key Idea: Cut-off Near Leaves
● Aggregate tasks near leaves.

+ Low risk of serious loss of parallelism.

+ Chance to apply powerful compiler optimizations
 after cut-off.

● Our compiler tries to determine a condition under
which the recursion stops within a certain height.

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4

n=5

n=1 n=0

n=2

n=3

n=1

n=6

n=7

n=2

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4

Encircled by

21

Height of Task
● Consider a task tree of fib(16) below.

fib calculates

– Height is difficult to obtain, but it is
suitable for a cut-off condition.

n=1 n=0
n=2

n=3
n=1 n=1 n=0

n=2
n=4

n=5

n=1 n=0
n=2

n=3
n=1

n=6

n=7

n=2
n=1 n=0

n=2
n=3

n=1 n=1 n=0
n=2

n=4

n=2 n=9

n=14 n=15
n=16(root)

Depth

Height

void fib(int n, int* r){
 if(n < 2){
 *r = n;
 }else{
 int a, b;
 spawn fib(n-1, &a);
 spawn fib(n-2, &b);
 sync;
 *r = a + b;
 }
}

Fn =
n if n < 2
Fn-1 + Fn-2 otherwise

Cut-off in ”height < 3”

22

Transformation Flow

1. Try to obtain a cut-off condition.

2. Optimize a task after cut-off.

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

void vecadd(float* a, float* b, int n){
 if(1 <= n && n <= 1024){
 vecadd_seq(a, b, n);
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}
void vecadd_seq(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 vecadd_seq(a, b, n/2);
 vecadd_seq(a+n/2, b+n/2, n-n/2);
 }
}

Input

23

Transformation Flow

1. Try to obtain a cut-off condition.

2. Optimize a task after cut-off.

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

void vecadd(float* a, float* b, int n){
 if(1 <= n && n <= 10000){
 vecadd_opt(a, b, n);
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}
void vecadd_opt(float* a, float* b, int n){
 for(int i = 0; i < n; i++)
 a[i] += b[i];
}
a
a
a
a

Input

24

How to Implement it?

1. Try to obtain a cut-off condition.

→ Try to calculate “the Hth termination condition”
 the condition in which a task ends within a height H.

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4H: Height

Key idea.

For example, the 2nd termination
condition of fib is “n <= 3”

25

How to Implement it?

1. Try to obtain a cut-off condition.

→ Try to calculate “the Hth termination condition”
 the condition in which a task ends within a height H.

2. Optimize task after cut-off.

→ Compiler optimizations:
 apply one of them.

 1. Static task elimination

 2. Code-bloat-free inlining

 3. Loopification

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4H: Height

Key idea.

+ Reduce function-calling overheads.

+ Simplify control flow.

+ Reduce tasking overheads.

26

Static Cut-off Flow
● Our developed system...

1. calculates the Hth termination condition.

2. decides a height H using heuristics.

3. applies one of the compiler optimizations:
● Static task elimination
● Code-bloat-free

 inlining
● Loopification

Try to identify
the Hth termination condition.

Try to apply
loopification.

Try to apply code-
bloat-free inlining.

Static task
elimination

Dynamic cut-off

Loopification

Code-bloat-free
inlining

Failed

Failed

Static cut-off

Succeeded

Succeeded

Succeeded Failed

2

1

3

3a

3b

3c

1 2

3a3b

3c

27

Termination Condition
● Consider a fibonacci task.

– Compute as
● (0th) termination condition is

a condition in which tasks never
create a child task.

void fib(int n, int* r){
 if(n < 2){
 *r = n;
 }else{
 int a, b;
 spawn fib(n-1, &a);
 spawn fib(n-2, &b);
 sync;
 *r = a + b;
 }
}

Fn =
n if n < 2
Fn-1 + Fn-2 otherwise

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4

n=5

n=1 n=0

n=2

n=3

n=1

fib(n=6)

fib(n=7)

n=2

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4

These tasks themselves never create a child,
so n < 2 is a termination condition.

1

28

Hth Termination Condition
● Consider a fibonacci task.

– Compute as
● Hth termination condition is

a condition in which tasks only
create a child task within a height H.

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4

n=5

n=1 n=0

n=2

n=3

n=1

fib(n=6)

fib(n=7)

n=2

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4

Fn =
n if n < 2
Fn-1 + Fn-2 otherwise

void fib(int n, int* r){
 if(n < 2){
 *r = n;
 }else{
 int a, b;
 spawn fib(n-1, &a);
 spawn fib(n-2, &b);
 sync;
 *r = a + b;
 }
}

The tasks create a task at most within height 2,
so n < 4 is a 2nd termination condition.

Height

1

29

Termination Condition Analysis
● A 0th termination condition is a condition

in which tasks never create children.
– A simple basic block analysis tells n < 2 is such a

condition for fib example.
● An Hth termination condition is

recursively calculated by using
an (H-1)th termination condition.
– It requires a simple algebra solver.

void fib(int n, int* r){
 if(n < 2){
 *r = n;
 }else{
 int a, b;
 spawn fib(n-1, &a);
 spawn fib(n-2, &b);
 sync;
 *r = a + b;
 }
}

1

30

Determining Cut-off Height H
● Basically, choose the larger H.

a. a height which makes the number of cycles after
 cut-off is less than 5000 cycles.

● Task creation takes approximately 100 cycles.

● We use the LLVM's cost function for estimation, which is
not so accurate, but seems sufficient for this use.

b. 4 (constant)

2

It is a minimum cut-off height.

It is designed for very
fine-grained tasks.

CPU Frequency Task Creation Time

Intel Xeon E7540 2.0GHz 36.0 [ns/task]

AMD Opteron 6380 2.5GHz 44.9 [ns/task]

Intel Xeon E5-2695 v2 2.4GHz 21.5 [ns/task]

Intel Xeon E5-2699 v3 2.3GHz 33.8 [ns/task]

[*] MassiveThreads https://github.com/massivethreads/massivethreads

Binary Task Creation
(Height = 27) on
MassiveThreads[*]
with one core.

31

void vecadd(float* a, float* b, int n){
 if(Hth Termination Condition){
 vecadd_seq(a, b ,n);
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}
void vecadd_seq(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 /*spawn*/vecadd_seq(a, b, n/2);
 /*spawn*/vecadd_seq(a+n/2, b+n/2, n-n/2);
 /*sync;*/
 }
}

Static Task Elimination
● If a compiler identifies H and calculates an Hth

termination condition, the simplest cut-off is applicable.

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

3a

Just remove spawn and sync
in the Hth termination condition.

32

General Inlining

● General inlining incurs
code bloat.
– Divide-and-conquer

tasks often have more
than one recursive calls.

3b

void vecadd(float* a, float* b, int n){
 if(Hth Termination Condition){
 vecadd_seq(a, b ,n);
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}
void vecadd_seq(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 /*spawn*/vecadd_seq(a, b, n/2);
 /*spawn*/vecadd_seq(a+n/2, b+n/2, n-n/2);
 /*sync;*/
 }
}

Inlining vecadd_seq() almost
doubles the code size.

33

void vecadd_seq(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 for(int i = 0; i < 2; i++){
 float *a2, *b2; int n2;
 switch(i){
 case 0:
 a2=a; b2=b ; n2=n/2; break;
 case 1:
 a2=a+n/2; b2=b+n/2; n2=n-n/2; break;
 }
 vecadd_seq(a2, b2, n2);
 }
 }
}

Code-bloat-free Inlining(1/2)

1. Delay execution of
 spawned tasks to
 corresponding sync.

3b

void vecadd_seq(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 for(int i = 0; i < 2; i++){
 float *a2, *b2; int n2;
 switch(i){
 case 0:
 a2=a; b2=b ; n2=n/2; break;
 case 1:
 a2=a+n/2; b2=b+n/2; n2=n-n/2; break;
 }
 vecadd_seq(a2,b2,n2);
 }
 }
}
a
a
a
a
a
a
a
a
a
a

34

Code-bloat-free Inlining(2/2)

1. Delay execution of
 spawned tasks to
 corresponding sync.

2. In the Hth termination
 condition, inlining H
 times can remove the
 innermost recursive calls.

3b

void vecadd_seq(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 for(int i = 0; i < 2; i++){
 float *a2, *b2; int n2;
 switch(i){
 case 0:
 a2=a; b2=b ; n2=n/2; break;
 case 1:
 a2=a+n/2; b2=b+n/2; n2=n-n/2; break;
 }
 //Inline vecadd_seq(a2,b2,n2)
 if(n2 == 1){
 *a2 += *b2;
 }else{
 //Never executed in the 1st condition.
 /* for(int i2 = 0; i2 < 2; i2++){
 float *a3, *b3; int n3;
 [...];
 vecadd_seq(a3,b3,n3);
 } */
 }
 }
 }
}

These recursive calls are never called
in the 1st termination condition.

35

Loopification: Goal
● Try to convert recursion into a loop.

3c

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

void vecadd(float* a, float* b, int n){
 if(Hth Termination Condition){
 vecadd_seq(a, b ,n);
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}
void vecadd_loop(float* a, float* b, int n){
 for(int i=0; i<n; i++)
 a[i] += b[i];
}

Desired final result.

36

Assumed input.

Loopification: Idea(1/2)
● The target task needs to have a recursion block in

non-termination condition.
– A recursion block is required to have no side-effects

but creating tasks.

– : leaf function
– : recursion block

3c

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

void f(a, b, c, ...){
 if(...){
 //Leaf function.
 L(a, b, c, ...);
 }else{
 //Recursion block.
 /*spawn*/f(a0 , b0 , c0 , ...);
 /*spawn*/f(a1 , b1 , c1 , ...);
 ...
 /*sync*/
 }
}

Blocks executed in
a termination condition.

37

Loopification: Idea(2/2)

1. Generate loop candidates by assigning a certain
 termination condition and estimating the loop form.
– The loop element is assumed to be a leaf function.

2. Then, check the equivalence of a loop candidate
 and recursion (induction)

3c

void vecadd_candidate1(float* a, float* b, int n){
 for(int i=0; i<n; i++){
 leaf_function(a + i, b + i, /**/);
 }
}

This verification is valid only
in a *th termination condition.

Please check our paper for details.

38

Why Loopification?
Why don't you use loop-parallelism in the first place?

→ We believe there are two merits:
– A divide-and-conquer strategy can be written as cache-

oblivious style, suitable for modern hierarchical memory.
● e.g., matrix multiplication, and stencil computation

– Our loopification also
vectorizes a loop utilizing
dependency information
revealed by task keywords.

void heat2d(array2d a, array2d b) {
 [...];
 if (sizex(a)==1 && sizey(b)==1) {
 ax = a[i-1,j]-2*a[i,j]+a[i+1,j];
 ay = a[i,j-1]-2*a[i,j]+a[i,j+1];
 b[i,j] = a[i,j]+K*(ax+ay);
 } else {
 spawn heat2d(div11(a), div11(b));
 spawn heat2d(div12(a), div12(b));
 spawn heat2d(div21(a), div21(b));
 spawn heat2d(div22(a), div22(b));
 sync;
 }
}

2D divide-and-conquer
achieves better cache locality.

3c

39

If Analysis Fails → Dynamic Cut-off
● Termination condition analysis sometimes fails

for various reasons.
– e.g., Pointer-based

 tree traversal.
–

● In that case, our system applies the dynamic cut-off
as a fallback strategy.
– We adopted the state-of-the-art dynamic cut-off

proposed by Thoman et al. [*]

It's difficult to identify
the simple “Hth termination condition”

void treetraverse(TREE* tree){
 if(tree->left==0&&tree->right==0){
 calc(tree);
 }else{
 if(tree->left)
 spawn(treetraverse(tree->left));
 if(tree->right)
 spawn(treetraverse(tree->right));
 sync;
 }
}

[*] P. Thoman et al. Adaptive granularity control in task parallel programs using
 multiversioning. Euro-Par '13, 2013

40

Summary of Static Cut-off
● Our developed system...

1. calculates an Hth termination condition.

2. decides a height H using heuristics.

3. applies one of the compiler optimizations:
● Static task elimination
● Code-bloat-free

 inlining
● Loopification

4. adopts dynamic cut-off
 if analysis () fails.

Try to identify
the Hth termination condition.

Try to apply
loopification.

Try to apply code-
bloat-free inlining.

Static task
elimination

Dynamic cut-off

Loopification

Code-bloat-free
inlining

Failed

Failed

Static cut-off

Succeeded

Succeeded

Succeeded Failed

2

1

3

3a

3b

3c

1 2

3a3b

3c

4
1

4

41

Index

0. Short Summary

1. Introduction

2. Proposal: Static Cut-off

3. Evaluation
– Benchmarks & Environment
– Performance Evaluation

4. Conclusion

42

Implementation & Environment
● We implemented it as an optimization pass

on LLVM 3.6.0.

Modified MassiveThreads[*1], a lightweight work-
stealing based task parallel system adopting the child-
first scheduling policy[*2].

● Experiments were done on dual sockets of Intel Xeon
E5-2699 v3 (Haswell) processors (36 cores in total).
– Use numactl --interleave=all to balance physical

memory across sockets

[*1] MassiveThreads https://github.com/massivethreads/massivethreads
[*2] Mohr et al., Lazy Task Creation: A Technique for Increasing the Granularity of
 Parallel Programs, LFP '90, 1990

43

Benchmarks
● 15 benchmarks were prepared for evaluation.

– All are divide-until-trivial task parallel programs.

Applicability・fib
・nqueens
・fft
・sort
・nbody
・strassen
・vecadd
・heat2d

・heat3d
・gaussian
・matmul
・trimul
・treeadd
・treesum
・uts

Only dynamic cut-off
is applicable to them.

44

How to Read?

0.1

1

10

100

1000 base
dynamic
static
cbf
loop
proposed
seq

Re
la

tiv
e

Pe
rfo

rm
an

ce
(b

as
e

=
1)

– Y-Axis: Relative performance over ■ base (divide-until-trivial)

■ dynamic: dynamic cut-off proposed by Thomans et al.
■ static: all - loopification - code-bloat-free inlining
■ cbf: all - loopification
■ loop: all
■ proposed: the total performance
■ seq: sequential (not task-parallelized)

Only show the results
if static / cbf / loop

is applicable.

45

Only show the results
if static / cbf / loop

is applicable.

How to Read?

0.1

1

10

100

1000 base
dynamic
static
cbf
loop
proposed
seq

Re
la

tiv
e

Pe
rfo

rm
an

ce
(b

as
e

=
1)

– Y-Axis: Relative performance over ■ base (divide-until-trivial)

■ dynamic: dynamic cut-off proposed by Thomans et al.
■ static: all - loopification - code-bloat-free inlining
■ cbf: all - loopification
■ loop: all
■ proposed: the total performance
■ seq: sequential (not task-parallelized)

?

46

Roughly speaking, How to Read?

0.1

1

10

100

1000 base
dynamic
static
cbf
loop
proposed
seq

Re
la

tiv
e

Pe
rfo

rm
an

ce
(b

as
e

=
1)

– Y-Axis: Relative performance over ■ base (divide-until-trivial)

■ dynamic: dynamic cut-off proposed by Thomans et al.
■ static: static task elimination if applicable
■ cbf: code-bloat-free inlining if applicable
■ loop: loopification if applicable
■ proposed: our proposal (the right chart)
■ seq: not task-parallelized

Try to identify
the Hth termination condition.

Try to apply
loopification.

Try to apply code-
bloat-free inlining.

Static task
elimination

Dynamic cut-off

Loopification

Code-bloat-free
inlining

Failed

Failed

Static cut-off

Succeeded

Succeeded

Succeeded Failed

47

Single-threaded Performance (1/3)

● Cut-off (■ & ■) improved performance overall.
● Compared to ■ dynamic cut-off,

■ our proposed cut-off achieved higher performance.

0.1

1

10

100

1000

base
dynamic
proposed

Re
la

tiv
e

Pe
rfo

rm
an

ce
(b

as
e

=
1)

48

Single-threaded Performance (2/3)

0

5

10

15

20

base
dynamic
static
seq

Re
la

tiv
e

Pe
rfo

rm
an

ce
(b

as
e

=
1)

● Performance of ■ static was better than ■ dynamic if
termination condition analysis succeeded.
– Evaluation of a cut-off condition inserted at compile

time is less expensive than that of dynamic cut-off.
– ■ static achieved comparable performance of ■ seq.

Static task elimination successfully
reduced tasking overheads in most cases.

49

0.1

1

10

100

1000

base
cbf
loop
proposed

Single-threaded Performance (3/3)

● Performance was furthermore improved
if ■ cbf / ■ loop was applicable.

● As a result, ■ our proposal achieved 11.2x speedup
(from 1.1x to 333x) on average over original task
parallel programs.

Re
la

tiv
e

Pe
rfo

rm
an

ce
(b

as
e

=
1)

50

Multi-threaded Performance

– Multi-threaded performance (36 cores) is similar to
single-threaded one.

● ■ Our proposal achieved 8.0x speedup (from 1.1x to
220x) on average over original task parallel programs.

0.1

1

10

100

1000

base
dynamic
proposed

Re
la

tiv
e

Pe
rfo

rm
an

ce
(b

as
e

=
 1

)

51

vs. Loop Parallel Programs

0.0
0.5
1.0
1.5
2.0
2.5

task
omp
omp_optimized
polly

Re
la

tiv
e

Pe
rfo

rm
an

ce
(ta

sk
 =

 1
)

Our proposal.

● Compared to loop parallel programs.
– ■ task: task parallel programs optimized by our proposal.
– ■ omp: programs just inserted #omp parallel for.
– ■ omp_optimized: OpenMP ones hand-tuned carefully.

– ■ polly: programs automatically parallelized by Polly [*].
Tuning attributes (collapse, chunk size, scheduling etc) and loop blocking.

[*] Grosser et al., Polly - Polyhedral optimization in LLVM., IMPACT '11, 2011.

52

vs. Loop Parallel Programs

0.0
0.5
1.0
1.5
2.0
2.5

task
omp
omp_optimized
polly

Re
la

tiv
e

Pe
rfo

rm
an

ce
(ta

sk
 =

 1
)

Our proposal.

● Performance of ■ task was comparable to that of
■ omp and ■ polly.

● ■ Optimized OpenMP version was fastest, however.
– One reason is that the recursive cache blocking is

not so flexible as to fit the exact cache size.

Even faster in some cases.

53

Index

0. Short Summary

1. Introduction

2. Proposal: Static Cut-off

3. Evaluation

4. Conclusion

54

Conclusion
● We propose a compiler optimizing divide-until-trivial

task parallel programs using the Hth termination
condition analysis.
– Further optimizations are developed based on the

analysis.
● The evaluation shows the efficacy of the proposed

automatic cut-off.
Future work:
・Widen the applicable range of loopification.
・Adopt better heuristics (or totally new
 methods) to determine a height H.

