A Static Cut-off
for Task Parallel Programs

Shintaro Iwasaki, Kenjiro Taura
Graduate School of Information Science and Technology
The University of Tokyo

September 12,2016 @ PACT '16

(_#¥ THE UNIVERSITY OF TOKYO

Short Summary

« We focus on a fork-join task parallel programming
model. :| Keyword: divide-and-conquer o

e

« "Cut-off” is an optimization technique for task parallel
orograms to control granularity.

 Previous cut-off systems have been dynamic, and
nave issues and limitations (detailed later.)

(_#¥ THE UNIVERSITY OF TOKYO

Short Summary

« We focus on a fork-join task parallel programming
model. :| Keyword: divide-and-conquer o

 "Cut-off” is an optimization technique for task parallel
orograms to control granularity.

e

 Previous cut-off systems have been dynamic, and
nave issues and limitations (detailed later.)

« We propose a static cut-off method and further
compiler optimization techniques based on it.

Evaluation shows good performance improvement.

- 8x speedup on average compared to the original.
(_#¥ THE UNIVERSITY OF TOKYO

Index

1. Introduction

- What is task parallelism?
- What is a “cut-off”?

- Related work: dynamic cut-off

(_#¥ THE UNIVERSITY OF TOKYO

Importance of Multi-threading

« The number of CPU cores is increasing.

« Multi-threading is an essential idea to exploit modern
Processors.

— A task parallel model is one of the most promising
parallel programming models.

6006
4 EofCPU cores is increasinf * 1
@)
5 4 CUBHEADTE >
)

T cnEne® ®o0ens ¢ » 6 6 @ o
2000 2003 2005 2008 201

(;’ THE UNIVERSITY OF TOKYO From CPU DB (http://cpudb.stanford.edu/)

Task Parallel Programming Models

 Task parallelism is a popular parallel programming model.

- Adopted by many famous systems/libraries:
« e.g., OpenMP (since ver. 3.0), Cilk / Cilk Plus, Intel TBB --

Intel Cilk Plus [v
OpenMP *‘e PR
ilk \ |
P57
« |t has two major features: i o
Intel TBB
* Each image is from their official pages.

- Dynamic load balancing

- Suitability for divide-and-conquer algorithms

* In this talk, we focus on a “fork-join task parallel model.”

6
’ THE UNIVERSITY OF TOKYO

Fork-join Task Parallelism

« We use program examples given in Cilk syntax.

« Two basic keywords are provided to express
task parallelism: spawn and sync.

- Spawn (= fork) : create a task as a child, which will be
executed concurrently.

- Sync (= join) : wait all tasks created (or spawned) by itself.

void vecadd(float* a, float* b, int n){
if(n == 1){
*a += *Db;
telse{
spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
sSync;

void vecadd(float* a, float* b, int n){
for(int 1 = 0; i < n; it++)
ali] += b[il;
3

[Same meaning. J

C ’ THE UNIVERSITY OF TOKYO

Fork-join Task Parallelism

« We use program examples given in Cilk syntax.

« Two basic keywords are provided to express
task parallelism: spawn and sync.

- Spawn (= fork) : create a task as a child, which will be
executed concurrently.

- Sync (= join) : wait all tasks created (or spawned) by itself.

° The ma|n target |S a d|V|de_ void vecadd(float* a, float* b, int n){

if(n == 1){
and-conquer algorithm. reroet D
spawn vecadd(a, b, n/2);
_ eg SOrt FFT FMM AMR spawn vecadd(a+n/2, b+n/2, n-n/2);
e / / / / sync;

cache-oblivious GEMM ;"

(_#¥ THE UNIVERSITY OF TOKYO

Overheads of Task Parallel Program

« In general, task parallel runtime is designed to handle
fine-grained parallelism efficiently.

« However, extreme fine granularity imposes large
overheads, degrading the performance.

void vecadd(floatx a, floatx b, int n){

. : : . if(n == 1){
This vecadd is a too fine-grained task; xa += *Db;
_ telse{
one leaf task only calculates *a += *b. spavn vecadd(a, b, n/2):

spawn vecadd(a+n/2, b+n/2, n-n/2);
sync;

3

C ’ THE UNIVERSITY OF TOKYO

Overheads of Task Parallel Program

« In general, task parallel runtime is designed to handle
fine-grained parallelism efficiently.

« However, extreme fine granularity imposes large
overheads, degrading the performance.

void vecadd(floatx a, floatx b, int n){
if(n == 1){
*a += *b;
telse{
spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
sync;

3

This vecadd is a too fine-grained task;
one leaf task only calculates *a += *b.

}

 Cut-off has been known as an effective optimization

technique.
(¥ THE UNIVERSITY OF TOKYO

10

Cut-off: An Optimization Technique

 Cut-off is a technique to reduce a tasking overhead by
stop creating tasks in a certain condition.

- i.e., execute a task in serial in that condition.

void vecadd(float* a, floatx b, int n){ void vecadd(float* a, float* b, int n){

if(n == 1){ if(1<= n && n <=1000){
*a += *xb; vecadd_seq(a, b,‘ﬁi:: _ e
Jelsef Jelses A cut-off condition
spawn vecadd(a, b, n/2); spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2); spawn vecadd(a+n/2, b+n/2, n-n/2);
sync; sync;
3 . 3
) | Call a sequential vecadd 3
; _ _ //Sequential version of vecadd
if1 <= n && n <= 1000 void vecadd_seq(float* a, float* b, int n){
if(n == 1){
*a += *Db;

e Programmers commonly else

/*spawn*/vecadd_seq(a, b, n/2);
/*spawn*/vecadd_seq(a+n/2, b+n/2, n-n/2);

apply it manually. Jrspauns
3

’ THE UNIVERSITY OF TOKYO }

Cut-off + Further Optimizations

void vecadd(float* a, floatx b, int n){ void vecadd(float* a, float* b, int n){

if(n == 1){ _nFf if(1 <= n && n <= 4096){
*a += *b; 1‘ CUt Of vecadd_seq(a, b, n);
tTelse{ telse{

spawn vecadd(a, b, n/2);

spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);

spawn vecadd(a+n/2, b+n/2, n-n/2);

sync; sync;
¥)
>)
void vecadd_seq(float* a, float* b, int n){
for(int 1 = 0; 1 < n; i++)
- 1] += i —
2. Transformation ati] == blil;

}

| vecadd_seq() is loopified.

« |n addition to reducing tasking overheads, further
transformations are applicable to serialized tasks
In some cases.

12
’ THE UNIVERSITY OF TOKYO

Cut-off + Further Optimizations

» Automatic cut-off addresses these problems.
- Find a cut-off condition automatically.
- Serialize a task function after a cut-off.
- And, even optimize the serialized function

.. by just writing naive task parallel programs.

13
r ’ THE UNIVERSITY OF TOKYO

Our Proposal: Static Cut-off

« We propose a compiler optimization technique of an
automatic cut-off including further optimizations for
task parallel programs without any manual cut-off.

(_#¥ THE UNIVERSITY OF TOKYO

void vecadd(float* a, floatx b, int n){

}

if(1 <= n & n <= 4096){
vecadd_seq(a, b, n);

telse{
spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
sSync;

}

void vecadd_seq(float* a, float* b, int n){

}

// Vectorize the following for-loop,
// since task keywords implicitly reveal
// each iteration is independent.
for(int 1 = 0; 1 < n; i++)

ali] += b[il;

Our Proposal: Static Cut-off

« We propose a compiler optimization technique of an
automatic cut-off including further optimizations for

///////////////////////////////////////

Eet's say divide-until-trivial task parallel programj

S.
_J

- Compiler optimizations 7 28 G Y peese - > 1t M
° dd— (’ b’)7
for simple loops have jelseg T
spawn vecadd(a, b, n/2);
been well developed. spawn vecadd(a+n/2, b+n/2, n-n/2);
sync;
3

« Loop blocking, unrolling

. void vecadd_seq(float* a, float* b, int n){
|nterChange, etc... // Vectorize the following for-loop,

// since task keywords implicitly reveal

— Develop optimizations foring 1o g, gn e pdebendent:
. alil += b[i];
for divide-until-trivial tasks. |3

(_#¥ THE UNIVERSITY OF TOKYO

Index

2. Proposal: Static Cut-off

- What cut-off condition is used?

- How about further optimizations after cut-off?

(_#¥ THE UNIVERSITY OF TOKYO

16

Dynamic Cut-off (1/2)

« Most previous studies on automatic cut-off [*1,%2,*3]
focus on adaptive cut-off (dynamic cut-off)

- Dynamic cut-off is a technique not creating tasks when
runtime information tells task creation is not beneficial.

« Runtime information:
a total number of tasks, task queue length, execution
time, depth of tasks, frequency of work stealing etc...

[*1] Bi et al. An Adaptive Task Granularity Based Scheduling for Task-centric
Parallelism, HPCC '14, 2014

[*2] Duran et al. An Adaptive Cut-offfor Task Parallelism, SC '08, 2008

[*3] Thoman et al. Adaptive Granularity Control in Task Parallel Programs

(;’ THE UNNERSITYOF TOKYO Using Multiversioning, Euro-Par'13, 2013

.
State-of-the-art Dynamic Cut-off

« One proposed by Thoman et al. [*] is state-of-the-art.

- For each spawns, call/create either

1. an original task
2. a task inlined some times
3. a fully serialized task

spawn vecadd(a, b, n/2);

Selection using runtime information

which is decided by
runtime information.

. e.g., task queue length

'

task

\

Task

J

Original
If tasks are likely to exist abundantly,
it runs a fully serialized task instead.

[*] P. Thoman et al. Adaptive granularity control in task parallel programs using
multiversioning. Euro-Par '13, 2013

C ’ THE UNIVERSITY OF TOKYO

\.

inlined
once

'

3

k‘ twice

N

J

L

Fully
serialized
task

18

Dynamic Cut-off (2/2)

« Most previous studies on automatic cut-off [*1,%2,*3]
were dynamic cut-off.

- Dynamic cut-off is a technique serializing tasks when
runtime information tells task creation is not beneficial.

« Compared to dynamic cut-off, our static cut-off has
two major advantages.

1. Cost to evaluate a cut-off condition is low.
2. More aggressive optimizations are likely to be applied.

‘ Dynamic cut-off adva ntage: \[*1] Bi et al. An Adaptive Task Granularity Based Scheduling for Task-centric

id sl Parallelism, HPCC '14, 2014
WIdEer applicable range. [*2] Duran et al. An Adaptive Cut-offfor Task Parallelism, SC '08, 2008

U T [*3] Thoman et al. Adaptive Granularity Control in Task Parallel Programs
(;’ THE UNIVERSITY OF 10KYO Using Multiversioning, Euro-Par'13, 2013

Key |dea: Cut-off Near Leaves

IIIIIIIIIIIIIIIIIIIIIIIII

E\circled by: ¢
« Aggregate tasks near leaves.

+ Low risk of serious loss of parallelism.

+ Chance to apply powerful compiler optimizations
after cut-off.

« Our compiler tries to determine a condition under
which the recursion stops within a certain height.

Height of Task

void fib(int n, int*x r){

» Consider a task tree of fib(16) below. Tt
: n ifn<2 telse{
— t a, b;
fib calculates F {Fn-] + Fn-2 otherwise ;Bawﬁ fib(n-1, &a);
.) o . o spawn fib(n-2, &b);
- Height is difficult to obtain, but it is ynes L.
suitable for a cut-off condition. } }

_n=16(root) |

IDepth

| n=2

Height]

21

Transformation Flow

void vecadd(float* a, float* b, int n){
if(n == 1){
*a += *b;
telse{
spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
sync;
}
3

-

Input

void vecadd(float* a, float* b, int n){
if(1 <= n & n <= 1024){
vecadd_seq(a, b, n);
telse{
spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
sync;
}
}

void vecadd_seq(float* a, float* b, int n){

if(n == 1){
*xa += *Db;
telse{
vecadd_seq(a, b, n/2);
vecadd_seq(atn/2, b+n/2, n-n/2);
3
3

1. Try to obtain a cut-off condition.

(_#¥ THE UNIVERSITY OF TOKYO

22

Transformation Flow

void vecadd(float* a, float* b, int n){
if(n == 1){
*a += *b;
telse{
spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
sync;
}
3

-

Input

void vecadd(float* a, float* b, int n){
if(1 <= n & n <= 10000){
vecadd_opt(a, b, n);
telse{
spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
sync;
}
}

void vecadd_opt(floatx a, floatx b, int n){

for(int i = 0; i < n; it++)
a[i] += b[i];

2. Optimize a task after cut-off,

C ’ THE UNIVERSITY OF TOKYO

23

How to Implement it?

1. Try to obtain a cut-off condition. /[Key dea. |

— Try to calculate “the Hth termination condition”
the condition in which a task ends within a height H.

H: Height _
A S [---------------- S 3
|_n=2)|
/\
n=1] [n=0]
For example, the 2nd termination
condition of fib is “n <= 3"
24

C ’ THE UNIVERSITY OF TOKYO

How to Implement it?

1. Try to obtain a cut-off condition. /[Key dea. |

— Try to calculate “the Hth termination condition”
the condition in which a task ends within a height H.

2. Optimize task after cut-off. H-Height |

. L . A S A,
— Compiler optimizations: - s]
apply one of them. r [/]\Zr]][”=1]§=,,,

1. Static task elimination { Reduce tasking overheads. B

2. Code-bloat-free inlining E Reduce function-calling overheadz

—

55/

3. Loopification J+ Simplify control flow.

C ’ THE UNIVERSITY OF TOKYO

Static Cu

« Our developed system...

1

2

t-off Flow

calculates the Hth termination condition.

decides a height H using heuristics.

applies one of the compiler optimizations:

3a

3b

3¢

Static task elimination
Code-bloat-free
inlining

Loopification

(_#¥ THE UNIVERSITY OF TOKYO

1|2 Try to identify
| the Hth termination condition.

...

Succeeded Failed

- Tryto 3 pply)

~ loopification. |
Succeedfrd F:.;a"i'lé'd """"""""""""""""""""""""""

| Dynamic cut-off |

Try to apply code-

1 Loopification

' Static cut-off -

bloat-free inlining.

Succeeded Failed

3b|Code-bloat-free ~ |3al Static task
| inlining ~ elimination

Termination Condition

void fib(int n, intx r){
. . . if(n < 2){
 Consider a fibonacci task. R
. telse{
B R 1fn<?2 int a, b;
Compute as £ = Fn-1 + Fn2 otherwise zg:xﬂ EEEE:; iﬁgf

e (Oth) termination condition is syne;

a condition in which tasks never

create a child task.

Hth Termination Condition

void fib(int n, intx r){
. . . if(n < 2){
 Consider a fibonacci task. Ve
. telse{
B R 1fn<?2 int a, b;
Compute as Fi = Fn-1 + Fn-2 otherwise zg:m EEEE:; zsgf

« Hth termination condition is syne;

a condition in which tasks only

create a child task within a height A,

|||||||||||||||||||||||||

:-The tasksicreate a task at most within heightTI

IIIIIIIIIIIIIIIIIIIIIIIIIIIII »>

son < 4isa2ndtermination condition. fib(n=6)

1

Termination Condition Analzsis

e A (Oth termination condition is a condition
in which tasks never create children.

- A simple basic block analysis tells n < 2 is such a

condition for fib example. void fib(int n, intx r){
if(n < 2){

» An Hth termination condition is Jelsel
recursively calculated by using ;Bzwi’f?g<n-1, 8a);
an (H-7)th termination condition. E?ﬁvgv?:b:_z’ -
- Itrequires a simple algebra solver.

29
r ’ THE UNIVERSITY OF TOKYO

2

Determining Cut-off Height H

: It is designed for very
« Basically, choose the larger H. ‘ e c il EEE \

a. a height which makes the number of cycles after
cut-off is less than 5000 cycles.

« Task creation takes approximately 100 cycles.
Binary Task Creation CPU Frequency Task Creation Time \
(Height = 27) on Intel Xeon E7540 2.0GHz 36.0 [ns/task]
MassiveThreads[*] AMD Opteron 6380 2.5GHz 44.9 [ns/task]
with one core. Intel Xeon E5-2695 v2 2.4GHz 21.5 [ns/task]
\ Intel Xeon E5-2699 v3 2.3GHz 33.8 [ns/task] /

« We use the LLVM's cost function for estimation, which is
not so accurate, but seems sufficient for this use.

b. 4 (constant) == Itis a minimum cut-off height. |

C ’ THE UNIVERSITY OF TOKYO

30

[*] MassiveThreads https://qithub.com/massivethreads/massivethreads

3a

Static Task Elimination

« |f a compileridentifies Hand calculates an Hth
termination condition, the simplest cut-off is applicable.

void vecadd(floatx a, float* b, int n){
if(n == 1){
*a += *xb;
Jelse{
spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
sync;

}

}

ust remove spawn and sync

J
Ethe Hth termination condition./

-

void vecadd_seq(float* a, floatx b, int n){

void vecadd(float* a, floatx b, int n){

=

}

C ’ THE UNIVERSITY OF TOKYO

if(Hth Termination Condition){
vecadd_seq(a, b ,n);

telse{
spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
sync;

}

if(n D{
*a += xb;

telse{
/*spawn*/vecadd_seq(a, b, n/2);
/*spawn*/vecadd_seq(atn/2, b+n/2, n-n/2);
/*xsync;*x/

}

3b

General Inlining

void vecadd(float* a, floatx b, int n){

if(Hth Termination Condition){
vecadd_seq(a, b ,n);

telse{
spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+tn/2, n-n/2);
sync;

}

}
void vecadd_seq(float* a, float* b, int n){

if(n == 1){
*a += *b;

Jelse{
/*spawn*/vecadd_seq(a, b, n/2);
/*spawn*/vecadd_seq(atn/2, b+n/2, n-n/2);
/*sync;*/

[

« General inlining incurs
code bloat.

- Divide-and-conquer
tasks often have more
than one recursive calls.

_-

Inlining vecadd_seq() almcil

} } \ doubles the code size.

C ’ THE UNIVERSITY OF TOKYO

32

3b

if(n == 1){
*a += *b;
Jelse{
for(int 1 = 0; 1 < 2; i++){
float *a2, *b2; int n2;
switch(i){
case 0:
al2=a; b2=b ; N2=n/2; break;
case 1:
a2=atn/2; b2=b+n/2; n2=n-n/2; break;
3
vecadd_seq(a2,b2,n2);

Code-bloat-free Inlining(1/2)

void vecadd_seq(float* a, float* b, int n){

1. Delay execution of
spawned tasks to

corresponding sync.

33

3b

Code-bloat-free Inlining(2/2)

void vecadd_seq(float* a, float*x b, int n){

}

if(n == 1){
*a += *b;
Jelse{
for(int 1 = 0; 1 < 2; i++){
float *a2, *b2; int n2;

switch(i){
case 0:
al2=a; b2=b ; N2=n/2; break;
case 1:
a2=atn/2; b2=b+n/2; n2=n-n/2; break;
3
//Inline vecadd_seq(a2,b2,n2)
if(n2 == 1){
*a2 += *b2;
telse{

//Never executed in the 1st condition.

/* for(int 12 = 0; 12 < 2; 12++){
float *a3, *b3; int n3;

1. Delay execution of
spawned tasks to
corresponding sync.

2. In the Hth termination
condition, inlining H
times can remove the
innermost recursive calls.

C...];
vecadd_seq(a3,b3,n3);
T */

' These recursive calls are never called
, in the 1st termination condition.

}
b

34

3¢

Loopification: Goal

« Try to convert recursion into a loop.

void vecadd(float* a, float* b, int n){
if(n == 1){
*a += *b;
Jelse{
spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
sync;
}
3

C ’ THE UNIVERSITY OF TOKYO

| Desired final result.j
/

Al

void vecadd(float* a, floatx b, int n){
if(Hth Termination Condition){
vecadd_seq(a, b ,n);
telse{
spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
sync;

:\‘} """)
- void vecadd_loop(float* a, float* b, int n){ :

for(int 1=0; i<n; 1i++)
ali] += b[il;

o %)

3¢

Loopification: Idea(1/2)

« The target task needs to have a recursion block in
non-termination condition.

- Arecursion block is required to have no side-effects
but creating tasks.

vod vecadd(loats a, floats by int rreaa—
i k3 += *b; : //Leaf function.
FELGE mrmrrmsmsmrnsnsososmsssos——— L(a, b, ¢, .03
SSpawn Vecadd(a’ b’ n/2); : }e}jsgcursion block.
: spawn vecadd(a+n/2, b+n/2, n-n/2);: /*spawnx/f(a@ , bo , c0 , ...);
z,,S,}’nC;,‘:‘ /*xspawnx/f(al , b1 , c1 , ...);
h; };éync*/
} }
}
— i : |eaf funCtiOﬂ \ Assumed inpUt' /
- ‘ : recursion block Blocks executed in:l
"""""""""""" 36
a termination condition.
(_#¥ THE UNIVERSITY OF TOKYO

3¢

Loopification: Idea(2/2)

1. Generate loop candidates by assigning a certain
termination condition and estimating the loop form.

- The loop element is assumed to be a leaf function.

void vecadd_candidatel(float* a, floatx b, int n){

III

3

2. Then, check the equivalence of a loop candidate
and recursion (iﬂdUCtiOﬂ) This verification is valid only j

in a *th termination condition.

Please check our paper for details.
37

(_#¥ THE UNIVERSITY OF TOKYO

3¢

Why Loopification?

Why don't you use loop-parallelism in the first place?

— We believe there are two merits:

- A divide-and-conquer strategy can be written as cache-
oblivious style, suitable for modern hierarchical memory.

« e.g., matrix multiplication, and stencil computation
void heat2d(array2d a, array2d b) {

- Qur loopification also
vectorizes a loop utilizing
dependency information

revealed by task keywords.
2D divide-and-conquer
achieves better cache locality._

[...
if (sizex(a)==1 && sizey(b)==1) {

13

ax = ali-1,j]-2*%al1i,jl+ali+1,]];
ay = ali,j-1]1-2*%al1i,jl+ali,j+11];
bli,jl = ali,jl+Kx(ax+ay);

else {

spawn heat2d(divi1(a), div11(b));
spawn heat2d(div12(a), divi2(b));
spawn heat2d(div21(a), div21(b));
spawn heat2d(div22(a), div22(b));
sync;

| Analzsis Fails — Dynamic Cut-off

« Termination condition analysis sometimes fails

for various reasons.

- e.g., Pointer-based
tree traversal.

I: It's difficult to identify ﬁ
the simple “Hth termination condition”

void treetraverse(TREE* tree){
if(tree->left==08&tree->right==0){
calc(tree);
telse{
if(tree->left)
spawn(treetraverse(tree->left));
if(tree->right)
spawn(treetraverse(tree->right));
sync;
}
3

« In that case, our system applies the dynamic cut-off
as a fallback strategy.

- We adopted the state-of-the-art dynamic cut-off
proposed by Thoman et al. [*]

39
[*] P. Thoman et al. Adaptive granularity control in task parallel programs using
multiversioning. Euro-Par '13, 2013

(_#¥ THE UNIVERSITY OF TOKYO

Summary of Static Cut-off

« Our developed system...

1 |calculates an Hth termination condition.

2 \decides a height H using heuristics.

3 lapplies one of the compiler optimizations:

» (3a| Static task elimination 1]]2 Try to identify

| the Hth termination condition. /

* 3b| Code-bloat-free T Sicceeded T Failed
T - Tryt I 4 . |
inlining | opification, | Pynamiccuteoff

e _ Succeeded Failag 5

* |3c| Loopification ryy | e

— Loopification Try to apply code-

bloat-free inlining.

4 |adopts dynamic cut-off
: Succeeded Failed

If analySIS (1) falls’ 3b|Code-bloat-free 3al Static task
(¥ THE UNIVERSITY OF TOKYO Static cut-off . iniining ~ elimination

Index

3. Evaluation

- Benchmarks & Environment

- Performance Evaluation

(_#¥ THE UNIVERSITY OF TOKYO

41

Implementation & Environment

« We implemented it as an optimization pass
on LLVM 3.6.0.

Modified MassiveThreads[*1], a lightweight work-

stealing based task parallel system adopting the child-
first scheduling policy[*2].

« Experiments were done on dual sockets of Intel Xeon
E5-2699 v3 (Haswell) processors (36 cores in total).

- Use numactl --interleave=all to balance physical
memory across sockets

[*1] MassiveThreads https://qgithub.com/massivethreads/massivethreads 42

C ’ THE UNIVERSITY OF TOKYO [Mohr et al., Lazy Task Creation: A Technique for Increasing the Granularity of
- Parallel Programs, LFP '90, 1990

Benchmarks

* 15 benchmarks were prepared for evaluation.

- All are divide-until-trivial task

. fib - heat3d [Applicability

. nqueens ¢ gaUSS|an i

. fft * math| nqueens

e sOrt ¢ trimU| Z:rt

- nbody - treeadd nbody

- strassen ~ ° treesum recntd

- vecadd " uts heat2c
heat3d

- heat2d gaussan
matmul
trimul
treeadd
treesum
uts

(_#¥ THE UNIVERSITY OF TOKYO

narallel programs.

Dynamic Cut- Termination Code-bloat- Loopification
off Condition free Inlining
Analysis
v v v
v v v
v v v
v (1/2) (1/2)
v v v
v v (4/5) (4/5)
v v v v
v v v v
v v v v
v v v v
v v v v
v v (1/4) (1/4)
v
y Only dynamic cut-off
v is applicable to them.

How to Read?

v

= 1000 W base

% —~ 100 m dynamic

qq__) c|l|) 10 [static

ol (Vp]

=5 0l A A A AR 1 e o] =

= 01 S CN s H loop

T R LR LN ELP RSSO

K LSO & F MNP LSS H P > @ proposed
Qo?e Nk &’b & & 6)0\\?’ (0’5& N &@Q’ &\Q}" O@Q’ Prop

& M seq

- Y-Axis: Relative performance over B base (divide-until-trivial)

B dynamic: dynamic cut-off proposed by Thomans et al.
static: all - loopification - code-bloat-free inlining

M cbf: all - loopification —
M loop: all ﬁ()nly show the results

proposed: the total performance if static / cbf /loop
M seq: sequential (not task-parallelized) is applicable.

C ’ THE UNIVERSITY OF TOKYO

How to Read?

Roughly speaking, HOW tO Read?

]

= 1000 H base

% —~ 100 m dynamic

t L 10 [static

ol (Vp]

<2 il nilldd o iﬂ Il =<

+2 0.1 N N H loop

O L L LT H PP ATS S P

o & X S S S S SR RN SN X I proposed
Qo‘f’ Nk 52 & & 6)&\? (0’5“ & & & O@Q’ Prop

& M seq

Y-Axis: Relative performance over B base (divide-until-trivial)

B dynamic: dynamic cut-off proposed by Thomans et al.
static: static task elimination if applicable
M cbf: code-bloat-free inlining if applicable
B loop: loopification if applicable 5
proposed: our proposal (the right chart ») ueceeded N e
Bl seq: not task-parallelized _— bloat-free i/nnmng-)
(¥ THE UNIVERSITY OF TOKYO ooic ol nimng) | elmiaton) |

" Try to identify)

...

Succeeded N . Failed

‘ Twﬁqappw ‘; ‘ Dynmnkcuboﬁk
__loopification. .)

Single-threaded Performance (1/3)

)
)
C 1000
ge)
€ —~ 100
O
< 5 W base
a v .
1S ﬂﬂl]ﬂﬂ ﬂ T
= S o CN = proposed
X > & «’& NI N
Q N e(\ < r eb@&e&&&é & @z,bb Q/“})@ \’\}Q/,b&\

& 0&4‘0‘0@@“%&” Q/O@

S

« Cut-off (W &)

improved performance overall.

« Compared to B dynamic cut-off,
our proposed cut-off achieved higher performance.

C ’ THE UNIVERSITY OF TOKYO

47

Single-threaded Performance (2/3)

Qv
S 20
s
= — 15
€ 11 4 H base
& 2 : .J ﬂﬂ m dynamic
UV O .
Ev 0 ‘]J]-:Ij] ﬂﬂﬂ J J --i:l “static
S
o NP SRS S L Ed W seq
o & 50%%@’8*’8‘%\&@\@@’0%)

& Ny ECIIRCEEN NS 0?3’ L @& O<°Q’

« Performance of = static was better than B dynamic if
termination condition analysis succeeded.

- Evaluation of a cut-off condition inserted at compile
time is less expensive than that of dynamic cut-off.

- | static achieved comparable performance of B seq.

Static task elimination successfully
(¥ THE UNIVERSITY OF TOKYO reduced tasking overheads in most cases.

Single-threaded Performance (3/3)

1000

Ml 1) Hﬂ lbbfp

Relative Performance
(base = 1)
o - S
- = o oS

/o) RS
O
_
[
e
O
-
[
e
O 7

6 & & N L& O O WD & O & © A ™ proposed
Q QQ/Q'Q AN K9 \006 52 (J'bb QJ’Z;O/ S O ‘;_)\’b Q/’bb Q/c)\) O Q/’bo p p
& T L F 0?\’ @ &\Q’ & S

» Performance was furthermore improved
if M cbf/ M loop was applicable.

« Asaresult, " our proposal achieved 11.2x speedup
(from 1.1x to 333x) on average over original task
parallel programs.

49
’ THE UNIVERSITY OF TOKYO

Multi-threaded Performance

1000

Relative Performance
(base = 1)

Q/
S
& e

M base

mﬂuﬂmﬂﬂﬂﬂuﬂﬂ dind o

@&s&\«&&%@ bcmc D

S Q S
QD7 R é\ 'z> <\
AQJ&*\Q)*@ ‘x@x@ o<°

- Multi-threaded performance (36 cores) is similar to
single-threaded one.

e = QOur proposal achieved 8.0x speedup (from 1.1x to

220x) on average over original task parallel programs.

(_#¥ THE UNIVERSITY OF TOKYO

50

vs. Loop Parallel Programs

Q
|
= 2.5 Our proposaD
e - 20
S = W task
Hc:> | 15
op: I] i] I] Iﬂ omp
v S .
e “lomp_optimized
© O D m poll
O \0%0

« Compared to loop parallel programs.
- M task: task parallel programs optimized by our proposal.
- B omp: programs just inserted #omp parallel for.

- omp_optimized: OpenMP ones hand-tuned carefully.

Tuning attributes (collapse, chunk size, scheduling etc) and loop blocking.

- M polly: programs automatically parallelized by Polly [*].
(_#¥ THE UNIVERSITY OF TOKYO

[*] Grosser et al., Polly - Polyhedral optimization in LLVM., IMPACT '11, 2011.

vs. Loop Parallel Programs

)
§ ;g %roposaﬂ
E f 1> W task
i ﬂl[il.ﬂ.ljm
O wuwn
g 2 88 m m .] “Jomp_optimized
o IS 0 m poll
& N & & & &\‘5’% @7’ & 606?’%0 ’
S
« Performance of B task was comparable to that of
= omp and pO”y \ Even faster in some cases. |

e Optimized OpenMP version was fastest, however.

- One reason is that the recursive cache blocking is
not so flexible as to fit the exact cache size.

52
’ THE UNIVERSITY OF TOKYO

Index

0. Short Summary

1. Introduction

2. Proposal: Static Cut-off
3. Evaluation

4. Conclusion

C ’ THE UNIVERSITY OF TOKYO

53

Conclusion

« We propose a compiler optimizing divide-until-trivial
task parallel programs using the Hth termination
condition analysis.

- Further optimizations are developed based on the
analysis.

 The evaluation shows the efficacy of the proposed
automatic cut-off.

Future work:

- Widen the applicable range of loopification.

- Adopt better heuristics (or totally new
methods) to determine a height H.

C ’ THE UNIVERSITY OF TOKYO

