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OpenMP: the Most Popular Multithreading Model

▪ Multithreading is essential for exploiting

modern CPUs.

▪ OpenMP is a popular parallel programming model.

– In the HPC field, OpenMP is most popular for multithreading.

• 57% of DOE exascale applications use OpenMP [*].

▪ Not only user programs but also runtimes and libraries are 

parallelized by OpenMP.
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[*] D. E. Bernholdt et al. "A Survey of MPI Usage in the US Exascale Computing Project", Concurency Computat Pract Expr, 2018

Runtimes that have
an OpenMP backend

BLAS/LAPACK libraries FFTW library

DNN library

Kokkos, RAJA, OpenBLAS, Intel MKL, SLATE, Intel MKL-DNN, FFTW3, … 



▪ OpenMP parallelizes multiple software stacks.

▪ Nested parallel regions create OpenMP threads exponentially.
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Unintentional Nested OpenMP Parallel Regions

High-Level 
Runtime System

OpenMP Runtime System

Scientific Library

Math Library A

User Applications

Math Library B

OpenMP-parallelized code

OpenMP-parallelized code

OpenMP-parallelized code OpenMP-parallelized code

nested!

Code Example

#pragma omp parallel for
for (i = 0; i < n; i++)

dgemv(matrix[n], ...);

// BLAS library
void dgemv(...) {

#pragma omp parallel for
for (i = 0; i < n; i++)

dgemv_seq(data[n], i);
}

nested!

#pragma omp parallel for
for (i = 0; i < n; i++)

dgemm(matrix[n], ...);

void dgemm(...):
#pragma omp parallel for
for (i = 0; i < n; i++);

Thread

Core Core Core Core

Parallel Region

Thread Thread Thread Thread

Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread

Parallel Region Parallel Region Parallel Region Parallel Region



Can We Just Disable Nested Parallelism?

▪ How to utilize nested parallel regions?

– Enable nested parallelism: creation of exponential the number of threads

– Disable nested parallelism: adversely decrease parallelism
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#pragma omp parallel for
for (i = 0; i < n; i++)
comp(cells[i], ...);

void comp(...):
[...];
#pragma omp parallel for
for (i = 0; i < n; i++);

Node

Core Core Node Node

Core CoreCore Core

Core CoreCore Core

Core CoreCore Core

Core CoreCore Core

Node Node

Core CoreCore Core

Core CoreCore Core

Core CoreCore Core

Core CoreCore Core

Core Core

Core Core

Core Core

Core Core

Node

Multicore Manycore
Manycore + Many nodes

▪ Example: strong scaling on massively parallel machines

Cells Cells Cells

Is the outer parallelism enough to feed work to all the cores???



Two Directions to Address Nested Parallelism

▪ Nested parallel regions have been known as a problem since

OpenMP 1.0 (1997).

– By default, OpenMP disables nested parallelism[*].

▪ Two directions to address this issue:

1. Use several work arounds implied in the OpenMP specification.

=>  Not practical if users do not know parallelism at other software stacks.

2. Instead of OS-level threads, use lightweight threads as OpenMP threads

=>  It does not perform well if parallel regions are not nested (i.e., flat).

• It does not perform well even when parallel regions are nested.

=> Need a solution to efficiently utilize nested parallelism.
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[*]  Since OpenMP 5.0, the default becomes “implementation defined”, while most OpenMP systems continue to disable nested parallelism by default.

User-level threads (ULTs, explained later)



BOLT: Lightweight OpenMP over ULT

for Both Flat & Nested Parallel Regions

▪ We proposed BOLT, a ULT-based OpenMP runtime system, 

which performs best for both flat and nested parallel regions.

▪ Three key contributions:

1. An in-depth performance analysis in the LLVM OpenMP runtime, 

finding several performance barriers.

2. An implementation of thread-to-CPU binding interface that 

supports user-level threads. 

3. A novel thread coordination algorithm to transparently support both 

flat and nested parallel regions.
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Direction 1: Work around with OS-Level Threads (1/2)

▪ Several workarounds

1. Disable nested parallel regions

(OMP_NESTED=false, OMP_ACTIVE_LEVELS=...)

• Parallelism is lost.

2. Finely tune numbers of threads

(OMP_NUM_THREADS=nth1,nth2,nth3,...)

• Parallelism is lost. Difficult to tune

parameters.
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Thread Thread Thread Thread

Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread

Thread

Parallel Region

Parallel Region Parallel Region Parallel Region Parallel Region

#pragma omp parallel for
for (i = 0; i < n; i++)

dgemv(matrix[n], ...);

// BLAS library
void dgemv(...) {

#pragma omp parallel for
for (i = 0; i < n; i++)

dgemv_seq(data[n], i);
}

Thread Thread Thread Thread

Thread

Parallel Region

Thread

Parallel Region

Thread Thread Thread

1. OMP_NESTED=false

2. OMP_NUM_THREADS=3,3

Thread Thread Thread Thread Thread Thread Thread Thread Thread

Parallel Region Parallel Region Parallel Region

Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread

Parallel Region Parallel Region Parallel Region Parallel Region



Direction 1: Work around with OS-Level Threads (2/2)

▪ Workarounds (cont.)

3. Limit the total number of threads

(OMP_THREAD_LIMIT=nths)

• Can adversely serialize parallel regions;

doesn’t work well in practice.

4. Dynamically adjust # of threads

(OMP_DYNAMIC=true)

• Can adversely serialize parallel regions;

doesn’t work well in practice.

5. Use OpenMP task

(#pragma omp task/taskloop)

• Most codes use parallel regions.

Semantically, threads != tasks.

▪ How about using lightweight threads for OpenMP threads?
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Thread Thread Thread Thread

Thread

Parallel Region

Thread Thread

Parallel Region

Thread Thread Thread Thread
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Thread

Parallel Region

Thread Thread Thread Thread

Thread
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Thread Thread Thread Thread

Parallel Region

Thread Thread

Parallel Region

Thread

Parallel Region

Thread Thread Thread Thread

Task Task Task Task

Thread

Parallel Region

3. OMP_THREAD_LIMIT=8
8 threads.

4. OMP_DYNAMIC=true

5. task/taskloop

3, 4, 2, 1

Task Task Task Task Task Task Task Task Task Task Task Task

Thread Thread Thread

Parallel Region



Direction 2: Use Lightweight Threads

=> User-Level Threads (ULTs)

▪ User-level threads: threads implemented

in user-space.

– Manages threads without heavyweight kernel

operations.
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Naïve Pthreads User-level threads

Heavy!

[*] S. Seo et al. "Argobots: A Lightweight Low-Level Threading and Tasking Framework", TPDS '18, 2018

Thread scheduling (= context 
switching) involves heavy system 
calls.

User-level threads (ULTs) are
running on Pthreads; scheduling 
is done by user-level context 
switching in user space.

Small overheads.

Fork-Join Performance on KNL

> 350x



Solution 2: Use User-Level Threads

▪ The idea of ULTs is not new (back to <90s).

▪ Several ULT-based OpenMP systems have been proposed.

– NanosCompiler [1], Omni/ST [2], OMPi [3], MPC [4], ForestGOMP [5],  

OmpSs (OpenMP compatible mode) [6], LibKOMP [7] …
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▪ However, these runtimes do not perform well for

several reasons.

– Lack of OpenMP specification-aware optimizations

– Lack of general optimizations

[1] Marc et al., NanosCompiler: Supporting Flexible Multilevel Parallelism Exploitation in OpenMP. 2000
[2] Tanaka et al., Performance Evaluation of OpenMP Applications with Nested Parallelism. 2000
[3] Hadjidoukas et al., Support and Efficiency of Nested Parallelism in OpenMP Implementations. 2008
[4] Pérache et al., MPC: A Unified Parallel Runtime for Clusters of NUMA Machines. 2008
[5] Broquedis et al., ForestGOMP: An Efficient OpenMP Environment for NUMA Architectures. 2010
[6] Duran et al., A Proposal for Programming Heterogeneous Multi-Core Architectures. 2011
[7] Broquedis et al., libKOMP, an Efficient OpenMP Runtime System for Both Fork-Join and Data Flow Paradigms. 2012

For apples-to-apples comparison, we will 
focus on the ULT-based LLVM OpenMP.

and more.



Using ULTs is Easy

▪ Replacing a Pthreads layer with a user-level threading library

is a piece of cake.

– Argobots[*] we used in this paper has the Pthreads-like API

(mutex, TLS, ...), making this process easier.

– The ULT-based OpenMP implementation is OpenMP 4.5-compliant

(as far as we examined)

▪ Does the “baseline BOLT” perform well?
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Core Core

LLVM
OpenMP
over ULT

ULT layer
(Argobots)

OpenMP-Parallelized Program

OpenMP 
Thread

ULT

OpenMP 
Thread

ULT

OpenMP 
Thread

ULT

OpenMP 
Thread

ULT

Scheduler Scheduler
Pthreads Pthreads

Core Core

LLVM
OpenMP

OpenMP-Parallelized Program

OpenMP 
Thread

OpenMP 
Thread

OpenMP 
Thread

OpenMP 
Thread

Pthreads PthreadsPthreads Pthreads

LLVM OpenMP 7.0 over ULT (= BOLT baseline)LLVM OpenMP 7.0

Note: other ULT libraries (e.g., Qthreads, Nanos++, 
MassiveThreads …) also have similar threading APIs.

[*] S. Seo et al. "Argobots: A Lightweight Low-Level Threading and Tasking Framework", TPDS '18, 2018
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// Run on a 56-core Skylake server
#pragma omp parallel for num_threads(N)
for (int i = 0; i < N; i++)
#pragma omp parallel for num_threads(28)
for (int j = 0; j < 28; j++)

comp_20000_cycles(i, j);

GCC: GNU OpenMP with GCC 8.1
Intel: Intel OpenMP with ICC 17.2.174
LLVM: LLVM OpenMP with LLVM/Clang 7.0
MPC: MPC 3.3.0
OMPi: OMPi 1.2.3 and psthreads 1.0.4
Mercurium: OmpSs (OpenMP 3.1 compat) 2.1.0 + Nanos++ 0.14.1 

– Faster than GNU OpenMP.

• GCC

– So-so among ULT-based OpenMPs

• MPC, OMPi, Mercurium

– Slower than Intel/LLVM OpenMPs.

• Intel, LLVM

Popular Pthreads-based OpenMP

State-of-the-art ULT-based OpenMP

Nested Parallel Region (balanced)

Lower is better



Index

1. Introduction

2. Existing Approaches

– OS-level thread-based approach

– User-level thread-based approach

• What is a user-level thread (ULT)?

3. BOLT for both Nested and Flat Parallelism

– Scalability optimizations

– ULT-aware affinity (proc_bind)

– Thread coordination (wait_policy)

4. Evaluation

5. Conclusion

14



1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1 10 100

Ex
ec

u
ti

o
n

 t
im

e 
[s

]

# of outer threads (N)

BOLT (baseline) GOMP

IOMP LOMP

MPC OMPi

Mercurium Ideal

BOLT (opt)

Three Optimization Directions for Further Performance 
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▪ The naïve replacement (BOLT (baseline))

does not perform well.

▪ Need advanced optimizations

1. Solving scalability bottlenecks

2. ULT-friendly affinity

3. Efficient thread coordination

// Run on a 56-core Skylake server
#pragma omp parallel for num_threads(N)
for (int i = 0; i < N; i++)
#pragma omp parallel for num_threads(28)
for (int j = 0; j < 28; j++)

comp_20000_cycles(i, j);

Nested Parallel Region (balanced)
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1. Solve Scalability Bottlenecks (1/2)

▪ Resource management optimizations

1. Divides a large critical section protecting all threading resources.

• This cost is negligible with Pthreads.

2. Enable multi-level caching of parallel regions

• Called “nested hot teams” in LLVM OpenMP.
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Thread desc. pool

Team desc. pool

Thread ID counter

Thread desc. pool

Team desc. pool

Thread ID counter

Thread Thread Thread Thread

Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread

Thread

Parallel Region

Parallel Region Parallel Region Parallel Region Parallel Region

Team cache Team cache Team cache Team cache



1. Solve Scalability Bottlenecks (2/2)

▪ Thread creation optimizations

3. Binary creation of OpenMP threads.

17

Master 
(Thread 0)

Thread 3

Master 
(Thread 0)

Thread 2

Thread 3Thread 1Thread 2

Thread 1

Binary Thread CreationSerial Thread Creation (default LLVM OpenMP)

The critical path gets shorter.
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++ Scalable thread startup// Run on a 56-core Skylake server

#pragma omp parallel for num_threads(L)
for (int i = 0; i < L; i++)

#pragma omp parallel for num_threads(56)
for (int j = 0; j < 56; j++)

no_comp();

No computation to measure the pure overheads.

Nested Parallel Regions (no computation)
Lower is better



2. Affinity: How to Implement Affinity for ULTs

▪ OpenMP 4.0 introduced place and prod_bind for affinity.

– OS-level thread-based libraries (e.g., GNU OpenMP) use CPU masks.

▪ BOLT (baseline) ignored affinity (still standard compliant).

▪ However, affinity should be useful to

1. improve locality and 2. reduce queue contentions.

– Note: ULT runtimes use shared queues + random work stealing.

▪ How to implement place over ULTs?
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Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Place 0 Place 1 Place 2 Place 3

OpenMP Thread 0 OpenMP Thread 1 OpenMP Thread 2 OpenMP Thread 3 

With proc_bind, threads are bound to places.

// OMP_PLACES={0,1},{2,3},{4,5},{6,7}
// OMP_PROC_BIND=spread
#pragma omp parallel for num_threads(4)
for (i = 0; i < 4; i++)

comp(i);



Scheduler 0 Scheduler 1

Pthreads Pthreads

Scheduler 2 Scheduler 3

Pthreads Pthreads

Scheduler 4 Scheduler 5

Pthreads Pthreads

Scheduler 6 Scheduler 7

Pthreads Pthreads

Shared queue Shared queue Shared queue Shared queue Shared queue Shared queue Shared queue Shared queue

Implementation: Place Queue

▪ Place queues can implement

OpenMP affinity in BOLT.
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Core 0 Core 1

Place queue

Core 2 Core 3

Place queue

OpenMP 
Thread

ULT

OpenMP 
Thread

ULT

OpenMP 
Thread

ULT

Core 4 Core 5

Place queue

Core 6 Core 7

Place queue

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Place 0 Place 1 Place 2 Place 3

▪ Problem: OpenMP affinity setting is too deterministic.

// OMP_PLACES={0,1},{2,3},{4,5},{6,7}
// OMP_PROC_BIND=spread
#pragma omp parallel for num_threads(4)
for (i = 0; i < 4; i++)

comp(i);



Scheduler 0 Scheduler 1

Pthreads Pthreads

Shared queue Shared queue

Place queue

Scheduler 2 Scheduler 3

Pthreads Pthreads

Shared queue Shared queue

Place queue

Scheduler 4 Scheduler 5

Pthreads Pthreads

Shared queue Shared queue

Place queue

Scheduler 6 Scheduler 7

Pthreads Pthreads

Shared queue Shared queue

Place queue

OpenMP Affinity is Too Deterministic

▪ Affinity (or bind-var) is once set, all 

the OpenMP threads created 

in the descendant parallel 

regions are bound to places.

20

// OMP_PLACES={0,1},{2,3},{4,5},{6,7}
// OMP_PROC_BIND=spread
#pragma omp parallel for num_threads(8)
for (int i = 0; i < 8; i++)

#pragma omp parallel for num_threads(8)
for (int j = 0; j < 8; j++)
comp(i, j);

i=0

Place 0 Place 1 Place 2 Place 3

i=1 i=2 i=3 i=4 i=5 i=6 i=7

▪ Promising direction: scheduling innermost threads with 

unbound random work stealing.

The OpenMP specification writes so.

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

i=0,j=1
i=0,j=2
i=0,j=3
i=0,j=4
i=0,j=5
i=0,j=6

i=0,j=7

Limited load balancing.



Scheduler 0 Scheduler 1

Pthreads Pthreads

Shared queue Shared queue

Place queue

Scheduler 2 Scheduler 3

Pthreads Pthreads

Shared queue Shared queue

Place queue

Scheduler 4 Scheduler 5

Pthreads Pthreads

Shared queue Shared queue

Place queue

Scheduler 6 Scheduler 7

Pthreads Pthreads

Shared queue Shared queue

Place queue

Proposed New PROC_BIND: “unset”

▪ This scheduling flexibility

gives higher performance.
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// OMP_PLACES={0,1},{2,3},{4,5},{6,7}
// OMP_PROC_BIND=spread,unset
#pragma omp parallel for num_threads(8)
for (int i = 0; i < 8; i++)

#pragma omp parallel for num_threads(8)
for (int j = 0; j < 8; j++)
comp(i, j);

// OMP_PLACES={0,1},{2,3},{4,5},{6,7}
// OMP_PROC_BIND=spread
#pragma omp parallel for num_threads(8)
for (int i = 0; i < 8; i++)
#pragma omp parallel for num_threads(8)
for (int j = 0; j < 8; j++)

comp(i, j);

i=0

Place 0 Place 1 Place 2 Place 3

i=1 i=2 i=3 i=4 i=5 i=6 i=7

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

i=0,j=1
i=0,j=2
i=0,j=3
i=0,j=4
i=0,j=5
i=0,j=6

i=0,j=7

They can be scheduled on any cores.

Random work stealing for 
innermost threads.
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(Detailed: The thread affinity policy resets the bind-var ICV and the place-partition-var ICV to their implementation defined values and instructs the execution environment to follow these values.)

Lower is better



3. Flat Parallelism: Poor Performance

▪ BOLT should perform as good as the original LLVM OpenMP.

▪ Optimal OMP_WAIT_POLICY for GCC/Intel/LLVM improves 

performance of flat parallelism.
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#pragma omp parallel for num_threads(56)
for (int i = 0; i < 56; i++)

#pragma omp parallel for num_threads(56)
for (int j = 0; j < 56; j++) no_comp(i, j);

OMP_WAIT_POLICY=PASSIVE OMP_WAIT_POLICY=ACTIVE(PASSIVE)(PASSIVE)
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#pragma omp parallel for num_threads(56)
for (int i = 0; i < 56; i++)

no_comp(i);

Flat Parallel Region (no computation)Nested Parallel Regions (no computation)

Lower is better



Active Waiting Policy for Flat Parallelism

▪ Active waiting policy improves performance of flat parallelism

by busy-wait based synchronization.
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▪ If active, Pthreads-based OpenMP 

busy-waits for the next parallel region.

for (int iter = 0; iter < n; iter++) {
#pragma omp parallel for num_threads(4)
for (int i = 0; i < 4; i++)
comp(i);

}

fork

busy
wait

join fork join

busy
wait

* If passive, after completion of work, threads sleep on a condition variable.

▪ BOLT on the other hand yields to a 

scheduler on fork-and-join (~ passive).

Thread 0
(master) 

Thread 1

Thread 2

Thread 3

fork

switch
to sched

switch
to thread

Thread 1

Thread 2

Thread 3

join

Busy wait is faster than lightweight user-level context switch!

Thread 0

Scheduler 1

Scheduler 2

Scheduler 3

Scheduler 0

find
next ULT

join

OMP_WAIT_POLICY
=<active/passive>



Implementation of Active Policy in BOLT
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▪ If active, busy-waits for next 

parallel regions.

▪ If passive, relies on ULT 

context switching.

fork join fork

switch
to sched

Thread 0

Scheduler 1

Scheduler 2

Scheduler 3

switch
to thread

Thread 1

Thread 2

Thread 3

join

Scheduler 0

find
next ULT

fork join

busy
wait

fork join

busy
wait

Thread 0

Scheduler 0

Thread 1

Scheduler 1

Thread 2

Scheduler 2

Thread 3

Scheduler 3

ULT threads are not preemptive, so BOLT periodically yields to a 
scheduler in order to avoid the deadlock
(especially when # of OpenMP threads > # of schedulers).



Performance of Flat and Nested
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MPC serializes nested parallel 
regions, so it’s fastest.

As BOLT didn’t, MPC … OMPi do not 
implement the active policy.

#pragma omp parallel for num_threads(56)
for (int i = 0; i < 56; i++)

#pragma omp parallel for num_threads(56)
for (int j = 0; j < 56; j++) no_comp(i, j);

#pragma omp parallel for num_threads(56)
for (int i = 0; i < 56; i++)

no_comp(i);

Lower is better



Penalty of the Opposite Wait Policy

▪ How to coordinate threads significantly affects the overheads.

– Large performance penalty discourages users from enabling nesting.

▪ Is there a good algorithm to transparently support both

flat and nested parallelism?
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#pragma omp parallel for num_threads(56)
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Busy Waiting in Both Active/Passive Algorithms

▪ Though in both active and passive cases, they enter busy-

waits after the completion of threads.

– Can we merge it to perform both scheduling and flag checking?
27

fork join fork

switch
to sched

Thread 0

Scheduler 1

Scheduler 2

Scheduler 3

switch
to thread

Thread 1

Thread 2

Thread 3

join

Scheduler 0

find
next ULT

fork join

busy
wait

fork join

busy
wait

Thread 0
Scheduler 0
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void omp_thread() {
RESTART_THREAD:
comp();
while (time_elapsed() < KMP_BLOCKTIME) {

if (team->next_parallel_region_flag)
goto RESTART_THREAD;

}
}

void user_scheduler() {
while (1) {

ULT_t *ult = get_ULT_from_queue();
if (ult != NULL)

execute(ult);
}

}



Algorithm: Hybrid Wait Policy

▪ Hybrid: execute flag check and queue check alternately.

– [flat]: a thread does not go back to a scheduler.

– [nested]: another available ULT is promptly scheduled.
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void omp_thread() {
RESTART_THREAD:

comp();
while (time_elapsed() < KMP_BLOCKTIME) {

if (team->next_parallel_region_flag)
goto RESTART_THREAD;

ULT_t *ult = get_ULT_from_queue
(parent_scheduler);

if (ult != NULL)
return_to_sched_and_run(ult);

}
}

fork join

busy
wait

fork join

Thread 0
Scheduler 0

Thread 1
Scheduler 1

Thread 2
Scheduler 2

Thread 3
Scheduler 3

BOLT (hybrid)

busy wait
+ find next ULT

This technique is not applicable to OS-level 
threads since the scheduler is not revealed.



Performance of Hybrid: Flat and Nested

▪ BOLT (hybrid wait polocy) is

always most efficient in both flat

and nested cases.

– We suggest a new keyword “auto”

so that the runtime can choose

the implementation.
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#pragma omp parallel for num_threads(56)
for (int i = 0; i < 56; i++)

#pragma omp parallel for num_threads(56)
for (int j = 0; j < 56; j++) no_comp(i, j);

#pragma omp parallel for num_threads(56)
for (int i = 0; i < 56; i++)

no_comp(i);
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Summary of the Design

▪ Just using ULT is insufficient.

=> Three kinds of optimizations:

1. Address scalability bottlenecks

2. ULT-friendly affinity

3. Hybrid wait policy for

flat and nested parallelisms

▪ Our work solely focuses on OpenMP,

while some of our techniques are generic:

– Place queues for affinity of ULTs

– Hybrid thread coordination for runtimes

that have parallel loop abstraction.
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// Run on a 56-core Skylake server
#pragma omp parallel for num_threads(L)
for (int i = 0; i < L; i++)
#pragma omp parallel for num_threads(56)
for (int j = 0; j < 56; j++)
no_comp();
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Microbenchmarks 

32

// Run on a 56-core Skylake server
#pragma omp parallel for num_threads(L)
for (int i = 0; i < L; i++) {

#pragma omp parallel for num_thLreads(28)
for (int j = 0; j < 28; j++)

comp_20000_cycles(i, j);
}

// Run on a 56-core Skylake server
#pragma omp parallel for num_threads(56)
for (int i = 0; i < 56; i++) {

int work_cycles = get_work(i, alpha);
#pragma omp parallel for num_threads(56)
for (int j = 0; j < 56; j++)
comp_cycles(i, j, work_cycles);}

alpha makes the computation size random, 
while keeping the
total problem size.

Large alpha
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(Ideal): theoretical lower bound under perfect scalability.

Lower is betterLower is better



Microbenchmarks: vs. taskloop
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// Run on a 56-core Skylake server
#pragma omp parallel for num_threads(56)
for (int i = 0; i < L; i++) {

#pragma omp taskloop grainsize(1)
for (int j = 0; j < 28; j++)
comp_20000_cycles(i, j);

}
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▪ Parallel regions of BOLT are as fast as taskloop!

// Run on a 56-core Skylake server
#pragma omp parallel for num_threads(56)
for (int i = 0; i < 56; i++) {
int work_cycles = get_work(i, alpha);
#pragma omp parallel for num_threads(56)
for (int j = 0; j < 56; j++)
comp_cycles(i, j, work_cycles);}

Lower is betterLower is better



Evaluation: Use Case of Nested Parallel Regions

▪ The number of threads for outer 

loops is usually set to # of cores.

– i.e., if not nested, oversubscription

does not happen.

▪ However, many layers are 

OpenMP parallelized, which can 

unintentionally result in nesting.

▪ We will show two examples.

34

High-Level 
Runtime System

OpenMP Runtime System

Scientific Library

Math Library A

User Applications

Math Library B

OpenMP-parallelized code

OpenMP-parallelized code

OpenMP-parallelized code OpenMP-parallelized code

nested! nested!

:Function call



Evaluation 1: KIFMM

▪ KIFMM[*]: highly optimized N-body solver

– N-body solver is one of the heaviest kernels

in astronomy simulations.

▪ Multiple layers are parallelized by OpenMP.

– BLAS and FFT.

▪ We focus on the upward phase

in KIFMM.
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FFTW3BLAS

KIFMM

OpenMP parallelized code

OpenMP 
parallelized code

OpenMP 
parallelized code

OpenMP Runtime System

[*] A. Chandramowlishwaran et al., "Brief Announcement: Towards a Communication Optimal Fast Multipole Method and Its Implications at Exascale", SPAA '12, 2012

for (int i = 0; i < max_levels; i++)
#pragma omp parallel for
for (int j = 0; j < nodecounts[i]; j++) {

[...];
dgemv(...); // dgemv() creates a parallel region.

}



Performance: KIFMM

▪ Experiments on Skylake 56 cores.

– # of threads for the outer parallel region = 56

– # of threads for the inner parallel region = N (changed)

▪ Two important results:

– N=1 (flat): performance is almost the same.

– N>1 (nested): BOLT further boosts performance.
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void kifmm_upward():
for (int i = 0; i < max_levels; i++)

#pragma omp parallel for num_threads(56)
for (int j = 0; j < nodecounts[i]; j++) {

[...];
dgemv(...); // creates a parallel region.

}

void dgemv(...): // in MKL
#pragma omp parallel for num_threads(N)
for (int i = 0; i < [...]; i++)

dgemv_sequential(...);
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Different Intel OpenMP configurations:
nobind(=false),true,close,spread: proc_bind
dyn: MKL_DYNAMIC=true
Note that other parameters are hand tuned
(see the paper).

Higher is better



Evaluation 2: FFT in QBox

▪ Qbox[*]: first-principles molecular

dynamics code.

▪ We focus on the FFT computation part.

▪ We extracted this FFT kernel and change

the parameters based on the gold benchmark.
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[*] F. Gygi, “Architecture of Qbox: A scalable first-principles molecular dynamics code,” IBM Journal of Research and Development, vol. 52, no. 1.2, pp. 137–144, Jan. 2008.

FFTW3

OpenMP parallelized code

OpenMP 
parallelized code

OpenMP Runtime System

LAPACK/ScaLAPACK

BLAS
OpenMP parallelized code

MPI

// FFT backward
#pragma omp parallel for
for (int i = 0; i < num / nprocs; i++)

fftw_execute(plan_2d, ...);

void fftw_execute(...): // in FFTW3
[...];
#pragma omp parallel for num_threads(N)
for (int i = 0; i < [...]; i++)

fftw_sequential(...);

Qbox



Performance: FFTW3

▪ N=1 (flat): performance is almost the same.

▪ N>1 (nested): BOLT further increased performance.
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// FFT backward
#pragma omp parallel for
for (int i = 0; i < num / nprocs; i++)
fftw_execute(plan_2d, ...);

void fftw_execute(...): // in FFTW3
[...];
#pragma omp parallel for num_threads(N)
for (int i = 0; i < [...]; i++)

fftw_sequential(...);
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Summary of this Talk

▪ Nested OpenMP parallel regions are commonly

seen in complicated software stacks.

=> Demand for efficient OpenMP runtimes

to exploit both flat and nested parallelism.

▪ BOLT: an lightweight OpenMP library over ULT.

– Simply using ULTs is insufficient:

• Solve scalability bottlenecks in the LLVM OpenMP runtime

• ULT-friendly affinity implementation

• Hybrid thread coordination technique to transparently support

both flat and nested parallel regions.

▪ BOLT achieves unprecedented performance for nested parallel 

regions without hurting the performance of flat parallelism.
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Thank you for listening!

▪ BOLT: http://www.bolt-omp.org

▪ Q&A (as a software):

– What is the goal of the BOLT project?

• Improve OpenMP by ULTs:

– 1. enrich OpenMP tasking features with least overheads,

– 2. minimizing overheads of OpenMP threads, and 3. more.

– How to use it?

• BOLT is a runtime library: no special compiler is required.

GCC/ICC/Clang + LD_LIBRARY_PATH+=${BOLT_INSTALL_PATH} works.

– Is BOLT stable?

• Regularly checked with LLVM OpenMP tests (GCC 8.x, ICC 19.x, and Clang 10.x)

– What OpenMP features are supported?

• OpenMP 4.5 including task,

task depend, and offloading.
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