BOLT: Optimizing OpenMP Parallel Regions
with User-Level Threads

Shintaro Iwasaki’, Abdelhalim Amer?,
Kenjiro Taura’, Sangmin Seo?, Pavan Balaji*

"The University of Tokyo
*Argonne National Laboratory

Email: iwasaki@eidos.ic.i.u-Tokyo.ac.jp, siwasaki@anl.qov

mailto:iwasaki@eidos.ic.i.u-Tokyo.ac.jp

OpenMP: the Most Popular Multithreading Model

= Multithreadingis essential for exploiting C_)penMP

modern CPUSs. Enabling HPC since 1997

= OpenMPis a popular parallel programming model.

¢ In the HPC field, OpenMP is most popular for multithreading.
w 57% of DOExascaleapplications use OpenMP [*].

= Not only user programs but also runtimes and libraaes

parallelized by OpenMP. DNN library
~J

Kokkos RAJAOpenBLASNtel MKL, SLATHtel MKEDNN FFTWZ X
NN 7\
Runtimes that have BLAS/LAPACK libraries FFTW library
an OpenMP backend

[*] D. E.Bernholdtet al. "A Survey of MPI Usage in theEXascal€€omputing Project"ConcurencyComputatPractExpr, 2018

2

Unintentional Nested OpenMP Parallel Regions

#pragma omp parallel for
for (i =0; i <n;
dgemvymatrix[n], ...);

| ++)

// BLAS library
void dgem\(...) {
#pragma omp parallel for
for (i =0; i <n;
dgemv_seddata[n],

=

| ++)

i);

Code Example

User Applications

OpenMPparallelized code

Scientific Library
| OpenMPRparallelized code |

Math Libréry B

I OpenMPRparallelized code I
.

1 ivkath-Library Al

)
Py
Py
s
““““
"
Py
P
Py

\ 4
B s

HigketEvel

3
P
a®

‘R'untim*e System

OpenMP Runtime System

= OpenMP parallelizesiultiple software stacks

= Nested parallel regions create OpenMP threaglponentially

#pragma omp parallel for Thread
I =0 | <n: i|++ :

for (i 0; ! n, 1++) Parallel Region

dgemrmatrix[n], ...);

Thread Thread |[Thread Thread |

void dgemr(..):

#pragma Omp para”el for Threa Threaf{ Threar{ Threa({ Threa. RUEE] | Threa Threac{ Threa4 Threa Threat{ Thread

for (i =0 1 <n; i+4);

Can We Just Disable Nested Parallelism?

= How to utilize nested parallel regions?
¢ Enable nested parallelism: creation of exponential the number of three

¢ Disable nested parallelism: adversely decrease parallelism

= Example: strong scaling on massively parallel machines

|s the outer parallelism enough to feed work to all the cores??J?
~

Cells T THHSIEHE
#pragma omp parallel for
for (1 =0 em e
comp(cells]], ... Core | Core
“ Node Node
; Core Core Core Core Core Core Core Core
void compy...): | Core Core Core Core Core Core Core Core
L Node Node
#pragma omp parallel for . N N
for (i =0 i <n i+4) Multicore Manycore | ode | ode |

Manycore + Many nodes

N -
Two Directions to Address Nested Parallelism

= Nested parallel regionsave been known as a problem since
OpenMP 1.0 (1997).
¢ By default, OpenMP disables nested parallelism

= Two directions to address this issue:
1. Useseveral work aroundsnplied in the OpenMP specification.
=> Not practical if users do not know paralleligtother software stacks.
2. Instead of O&evel threadspse Iightwejgh\t threads as OpenMP threads

Userlevel threadqULTS, explained later]

=> It does not perform well if parallel regions are not nesed., flat).

w It does not perform well even when parallel regions are nested.

=> Need a solution to efficiently utilize nested parallelism.

wFf 8 {AYyOS hLlSyat pons GKS RSTFlrdzZ G 68502YS8a d&aAYLE SYSy il dlelisnyby defSul. .
5

BOLT: Lightweight OpenMP over ULT
for Both Flat & Nested Parallel Regions

= We proposedBOLTa ULTbased OpenMP runtime system
which performs best for both flat and nested parallel regions.

= Three key contributions:

1. An indepth performance analysia the LLVM OpenMP runtime,
finding several performance barriers.

2. An implementation ofhread-to-CPU binding interfacthat
supports usettevel threads.

3. A novel thread coordination algorithto transparently supporboth
flat and nestedparallel regions.

Index

2. Existing Approaches
¢ OSlevel threadbased approach
¢ Userlevel threadbased approach

w What is a usetevel thread (ULT)?

Direction 1: Work around with OS-Level Threads (1/2)

#pragma omp parallel for
for (i =0; i <n; i++)
dgemymatrix[n], ...);

// BLAS library
void dgemy\...){
#pragma omp parallel for
for (i =0; i <n; i++4)
dgemv_seddata[n], i);

Thread

Parallel Region

o)

Thread

Thread

Thread Thread

o

.

1.

Several workarounds

o

Disablenested parallel regions

(OMP_NESTED=false, OMP_ACTIVE_LEVELS=).

w Parallelism is lost.

(OMP_NUM_THREADS=nth1,nth2,nth3,...)

Finely tunenumbers of threads

ot

Threa iThread

w Parallelism is lost. Difficult to tune

parameters.

""""
. o

Threa iThread

.t
RS

ThreazﬂT hrea:HT hrea

Thread
Thread Thread || Thread || Thread
Parallel Reg... Tasallel Regin Parallel DM: . arallel Region

1. OMP_NESTED=false

Thread |
Parallel Region
Thread | Thread | Thread |

Parallel Region
Thread " Thread |-

2. OMP_NUM_THREADS=3,3

Parallel Region

Thread " Thread " Thread |

Parallel Region

Thread " Thread " Thread |

Direction 1: Work around with OS-Level Threads (2/2)

= Workarounds (cont.)

3. Limitthe total numberof threads

(OM P_THREAD_LIMIiths)

Thread

Parallel Region

Thread

Thread |

Thread |

Thread |

Parallel Region

w Can adversely serialize parallel regiofmf=

ParaIIeI Reglon

Parallel Reglon

ParaIIeI Reglon

TTTTT

R285ayQi 62N) 6Stf Ay iWﬁT@@%%§W
4. Dynamically adjust # of threads Tread
(OMP_DYNAlvnc:trDe Thread Thread “| Thread ‘| Thread ‘|
w Can adversely serialize parallel regiorf s
R28ayQi 62Nl BS¢ %’—
5. UseOpenMPtask ——
(#pragma omp task/ taskloop)
Thread Thread Thread Thread

w Most codes use parallel regions.
Semantically, threads != tasks.

|TasiITasiTasITasi |Tas|Tasl|Tasl|Tas* |Tas|TasI|TasIITaslt iTasiTasiiTasITas*

5. task/ taskloop

= How about using lightweight threads for OpenMP threads?

Direction 2: Use Lightweight Threads
=> User-Level Threads (ULTs)

1E+6
= Userlevel threads: threads implementeds
. G Tk > 350X
IN Userspace. S 1en I
¢ Manages threads without heavyweight kernef ¢,
: Pthread ULT
operations. (Argobots[*])

Fork-Join Performance on KNL

Thread scheduling (= context
switching) involvesieavy system

calls

eads
eads
eads
eads
eads
eads
eads
eads

[S N S S L S L

=g | e | e iy) prmri | prer i) e re) prer

P
P
P
P
P
P
P
P

v v e
e z Pthreads Pthreads
W Userlevel threads (ULTSs) are
Kemel (OS) running on Pthreads; schedulin ;
Bl B byl eoie

switchingin user space
\- J Userlevel threads

Naive Pthreads

[*] S.Seoet al. "Argobots: A Lightweight Lekevel Threading and Tasking Framework”, TPDS '18,
10

Solution 2: Use User-Level Threads
= The idea of ULTS IS not n@wuk to <90s)

@ V2 XD
= Several UL-based OpenMP systerhave been proposed

¢ NanosCompilefl], Omni/ST [2]OMPI[3], MPC [4]ForestGOMPS],
OmpSgOpenMP compatible mode) [@]IbKOMRoT 6 X

[1] Marc et al. NanosCompilerSupporting Flexible Multilevel Parallelism Exploitation in OpenMP. 2000

[2] Tanaka et al., Performance Evaluation of OpenMP Applications with Nested Parallelism. 2000

[3] Hadjidoukat al., Support and Efficiency of Nested Parallelism in OpenMP Implementations. 2008

[4] Péracheet al., MPC: A Unified Parallel Runtime for Clusters of NUMA Machines. 2008

[5] Broquediset al.,ForestGOMPAN Efficient OpenMP Environment for NUMA Architectures. 2010

[6] Duran et al., A Proposal for Programming Heterogeneous {@olte Architectures. 2011

[7] Broquediset al.,libKOMR an Efficient OpenMP Runtime System for Both Bork and Data Flow Paradigms. 2012

= However, these runtimes do not perform well for
several reasons.

¢ Lack oOpenMP specificaticaware optimizations

¢ Lack of general optimizations For applego-apples comparisonye will
focus on the Ul-based LLVM OpenMP.

11

Using ULTs is Easy

OpenMRParallelized Program OpenMRParallelized Program

IIIIIIIIIIII e E NN NN NN NN U NEE NN NN N NN GSEEEEEEEEEESE LLVM AN EEEEEEEEN, SEEEE NN EEE N UNE NN EEEEEN, EEEEEEENEEEEE
LLVM | OpenMP|| OpenMP || OpenMP || OpenMP OpenMp | OpenMP [} OpenMP || OpenMP || OpenMP
OpenMP} Thread Thread Thread Thread ' over ULT | Thread Thread Thread Thread

: : | : . ULT laver ULT ULT ULT ULT

| Pthreads || Pthreads || Pthreads || Pthreads | (Ar ob)(;ts)_“__“_

' : | : : 9 | Scheduler || Scheduler |

:-............I-............'H-...........-I-............'I Pthreads Pthreads

LLVM OpenMP 7.0 LLVM OpenMP 7.0 over ULTROLT baseline

= Replacing a Pthreads layer with a us®rel threading library

IS a piece of cake.
¢ Argobots? we used in this paper has the Pthredde API

(mutex, TLS, ...), making this process ezﬁ e L S RIS e s
¢ The ULIased OpenMP implementation is OpenMP-ddsnpliant

(as far as we examined)

« 5254 OUKS aolaStaysS . h[¢é LIS

12
[*1 S. Seoet al. "Araobots: A Liahtweiaht Lelwevel Threadina and Taskina Framework" TPDS '18.

Simple Replacement Performs Poorly

/Runonab56 -core Skylake server

#pragma omp parallel for num_threads (N)
for (int i =0; i <N; i++)
#pragma omp parallel for num_threads (28)
for (int j=0;)<28; j+t+)

comp_20000_cycles(i, j);

Nested Parallel Region (balanced)

¢ Faster than GNU OpenMP
w GCC

¢ Scesoamong ULPbasedOpenMPs

w MPC,OMPj Mercurium

¢ Slowerthan Intel/LLVMOpenMPs
w Intel, LLVM

1E+0

' Lower is better
1E-1
o,
[¢b)
£ 1E-2
[
i)
§ 1E-3
X
i

1E-4

1E-5

1 10 100
of outer threads (N)

—eo—BOLT (baseline) —e— GCC —e— MPC
—e— OMPI —e— Mercurium Intel

—o—LLVM e Ideal

Popular Pthread®ased OpenMP

State-of-the-art ULTbased OpenMP

| LLVM: LLVM OpenMP with LLVM/Clang 7.0
" MPC: MPC 3.3.0

GCC: GNU OpenMP with GCC 8.1
Intel: Intel OpenMP with ICC 17.2.174

OMPi OMPI1.2.3 andpsthreadsl.0.4
Mercuriunt OmpSgOpenMP 3.Tompad 2.1.0 + Nanos++ 0.14.1

13

Index

W
3. BOLT for both Nested and Flat Parallelism
¢ Scalability optimizations
¢ ULTaware affinity proc_bing
¢ Thread coordinationwait_policy)

14

Three Optimization Directions for Further Performance

1E+0
/Runonab56 -core Skylake server
#pragma omp parallel for num_threads (N)
for (int i =0; i <N; i++) 1E-1
#pragma omp parallel for num_threads (28)
for (int j=0;)<28; j+t+)
comp_20000_cycles(i, j); o, 1E-2
(]
Nested Parallel Region (balanced) E
§ 1E-3
= The naive replacemenoL (aseiine)) ¢
1E-4
does not perform well.
1E-5
= Needadvanced optimizations E6 . o
1. Solving scalability bottlenecks # of outer threads (N)
2. ULTFriendly affinity T basenem (o0
3. Efficient thread coordination #0w LLVM o+ MPC
<@ OMPI --@-- Mercurium
........ ldeal

15

1. Solve Scalability Bottlenecks (1/2)

! Thread |

Parallel Region

| Team cache

Team cache ||| |

Team cache |

(

Team cache |

’j.[

Thread

Thr%d

4 Thread

Thread desc. pooI

ﬁ Team desc. pool

Paral.el Reglon

Thread ID counter

ITriaa

Parallel Rﬁglon

ERE -

Parallel Region

‘Thread desc. pool

‘ ‘Team desc. pool

‘Thread ID counter

= Resource management optlmlzatlons
Divides a large critical secti@notecting all threading resources.
w This cost is negligible with Pthreads.

Enablemulti-level caching of parallel regions

1.

w/ I ffSR

GySaidSR Kz2i

St

Yace

Ay

[

+

16

a

1. Solve Scalability Bottlenecks (2/2)

= Thread creation optimizations

3. Binary creation of OpenMP threads

Master
(Thread O

Thread 1

Thread 2

Master
Thread 0

Y
v i Thread 1 I ;
\

i Thread 3 | {

v
Serial Thread Creation (default LLVM OpenMP)

v v

I/ Runonab6 -core Skylake server

#pragma omp parallel for num_threads (L)
for (int 1 =0; i <L; i++)
#pragma omp parallel for num_threads (56)
for (int j=0;]j<56; j++)
no_comp);

Nested Parallel Regions (no computation)

No computation to measure the pure overheads.

The critical path gets shorter

Execution time [s]

Binary Thread Creation

B2 BOLT (baseline)
—e—+ Efficient resource management
++ Scalable thread startup
1E-3
1E-4
‘Lower is better
1E-5
1 10 100

of outer threads (L)

17

-
2. Affinity: How to Implement Affinity for ULTs

I/l OMP_PLACES={0,1},{2,3},{4,5},{6,7}

/[OMP_PROC_BIND=spread

#pragma omp parallel for num_threads (4)
for (i =0; i <4; i++)

With proc_bind , threads are bound to places.| €omp(i);

S e . S,
: | OpenMP Thread G EE OpenMP Thread]l g OpenMP Thread 2 EE OpenMP Thread 3
Place O Place 1 _-":-. Place 2 Place 3

sl w

= OpenMP 4.0 introduced/ace andprod_bind for affinity.
¢ OSlevel threadbased libraries (e.g., GNU OpenMP) use CPU masks.

= BOLT (baseline) ignored affingyil standard compliant).

= However, affinity should be useful to
1. improve locality and 2. reduce queue contentions.

¢ Note: ULT runtimes use shared queues + random work stealing.

= How to implement place over ULTs?

18

Implementation: Place Queue

= Place queues can implement
OpenMP affinity in BOLT.

Fgadade

I/ OMP_PLACES={0,1},{2,3},{4,5},{6,7}

/[OMP_PROC_BIND=spread

#pragma omp parallel for

for (i =0; 1 <4; i++)
comp(i);

num_threads (4)

¥ '

i i
OpenMP OpenMP
ULT
Place queue ULT Place queue Place queue Place queue

OpenMP
B VY
ULT
Shared que Shared queue || = Shared queue Shared queue || ' Shared queue Shared queue || = Shared queue
Scheduler Scheduler 1 Scheduler 2 Scheduler 3 Scheduler 4 Scheduler 5 Scheduler 6 Scheduler 7
Pthreads Pthreads Pthreads Pthreads Pthreads Pthreads Pthreads Pthreads

= Problem:OpenMP affinity setting is too deterministic

19

AffINItY (or bindvar) ISONCE sefall
the OpenMP threads created
In the descendant parallel

OpenMP Affinity is Too Deterministic

Il OMP_PLACES={0,1},{2,3},{4,5},{6,7}
// OMP_PROC_BIND=spread

#pragma omp parallel for num_threads (8)

for (int i =0; i <8; i++)
#pragma omp parallel for num_threads (8)
for (int j=0;j<8; jt+)

comp(i ,);

regionsare bound to placesﬁ The OpenMP specification writes sq.

: Shared queue
: Scheduler.Q.

Limited load balancing. |

Place queue

Place queue Place queue

P.‘threade. 0 .I Pthp@ade. a0 .:; = PiVea0dS = = . .:'. RiRkeads = = - Rtmeads. .I: = R EAGES = .' r.

= Promising directionscheduling innermost threads with

s RifeadSssanunns Pihreads = = o

unbound random work stealing

20

Proposed New PROC_BIND: “unset”

OMP_WAIT_POLICY=unset: reset the affinity setting of the specified parallel regiol

(Detailed: Theinset thread affinity policy resets theind-var ICV and thelace-partition-var ICV to their implementation defined values and instructs the execution environment to follow these values.)

/l OMP_PLACES={0,1},{2,3},{4,5},{6,7}
/l OMP_PROC_BIND=spread

#pragma omp parallel for num_threads (8)

for (int 1 =0; i <8; i++)
#pragma omp parallel for num_threads (8)
for (int j=0;)<8§; j++)
comp(i, j);

»

/Il OMP_PLACES={0,1}{2,3},{4,5},{6,7}
// OMP_PROC_BINDspread ,unset
#pragma omp parallel for num_threads (8)

for (int i =0; | <8; 1++)
#pragma omp parallel for num_threads (8)
for (int j=0;j<8§; j++)
comp(i ,);

They can

be scheduled on any

Random work ste:
innermost threads

Scheduler 2 II Schedule

St Shared

Scheduler 0 Scheduler 1
Pthreads Pthreads Pthreads Pthread
Core O Core 1 Core 2 Core 3

= Thisscheduling flexibility
gives higher performance.

Execution time [s]

1E-4

1E-5

—e—BOLT (baseline)
—e—+ Efficient resource management
++ Scalable thread startup
—e—+++ Bind=spread
—e—++++ Bind=spread,unset

‘Lower is better

100

1 10
of outer threads (N)

21

3. Flat Parallelism: Poor Performance

= BOLT should perform as good as the original LLVM OpenMP

Nested Parallel Regions (no computation)

Flat Parallel Region (no computation)

#pragma omp parallel for

for (int 1 =0;
#pragma omp parallel for
for (int j=0;])<56;

num_threads (56)

i <56;i++)

num_threads (56)

j++) no_comgi, j);

BOLT I GCC

Intel

LLVM'

I
(PASSIVE)

!

OMP_WAIT_POLICNASSIVE

Execution time [us]

#pragma omp parallel for num_threads (56)

for (int i =0; i <56; i++)
no_comgi);
1E+2
Lower is better
1E+1 I I
1E+0 I
. BOLT Intel LLVM,
I I
(PASSIVE) OMP_WAIT _POLICXETIVE

= OptimaloMmP_WAIT_PoLIdgr GCC/Intel/LLVM improves
performance of flat parallelism.

22

Active Waiting Policy for Flat Parallelism

for (int iter =0; iter

#pragma omp parallel for

for (int i =0; | <4;i++)
comp(i);

<n; iter ++){

num_threads (4)

}

= Active waiting policy improves performance of flat parallelism
by busywait based synchronizatioﬁ[OMP_WAIT_POLICY]

=<active/passive>

= If active Pthreadsbased OpenMP

busywaitsfor the next parallel region.

= BOLT on the other handelds to a

scheduleron fork-andjoin (~ passivi

fork join fork join join fork join

Thread 0 ! : ! : Thread O : | I
rea =l comp =Pl=———d comp >} > »= comp > comp [=>l—>

(master) : : | | Scheduler G : Y rivead ,
Thread 1 —’:- comp 'I :: comp —’:——V Scheduler1 === comp : »—1 Th—;’- comp —P:——>

I rea

| | | | | |
Thread 2 | ="~ comp >~ comp [P Scheduler2 == comp [comp [F—>

| | | | l find 1 Thread !

' | ' | I next ULTy |
Thread 3 | == comp > comp Scheduler3 === comp -F|—>—|—J—F- comp [~r—>

l I bu;yl l bugy Iswitch switch I

walt walt

: . - . to schedto thread
* |f passive, after completion of work, threads sleep on a condition variable.

Busy wait is faster than lightweight uslewvel context switch!

Implementation of Active Policy in BOLT

=

= |factive busywaitsfor next = If passive, relies on ULT

parallel regions. context switching.
fork join fork join fork join fork join

Thread O : : : : Thread 0 : !
Scheduler G :; comp —P:—P:- comp ,: > Scheduler G —P:- comp comp —P:—>
Thread 1 >l comp : o1 comp —»l— | Scheduler 1 Y comp comp e

| Scheduler I I I I I :

Thread 2 I | | | | |
= o —— 5 9 —pd - —p——

Scheduler 2 I comp I I comp I Scheduler 2 I comp comp I

Thread 3 I I I : j : I next ULT | |
Scheduler 3 "r.come ™ TLcomp [~ > | Scheduler > comp [—> »=—= comp [~ r—>

3 busy, j busy | | | Jswitch switch I

wait wait to schedto thread

ULT threads are not preemptive, so BOLT periodically yields to a
scheduler in order to avoid the deadlock
(especially when # of OpenMP threads > # of schedulers).

24

Performance of Flat and Nested

#pragma omp parallel for
for (int 1 =0; i
#pragma omp parallel for

num_threads (56)

< 56; i++)

num_threads (56)

for (int j=0;)<56; j++) no_comgdi, j);
....... 1E+6
MPC serializes nested paralle
1E45 NEIAZ2ZyaZ az AdgQa
\/

1E+2 :
1E+1 I
1E+0 .
A C N g\ . O > &
< e :]
T VT A -
@é

Nested (passive)

#pragma omp parallel for num_threads (56)

for (int i =0; i <56; i++)
no_comgi);

1E+4

adSado

1E+3 a4 . h[¢ RARMPiGina |at

implement the active policy.

)
=
9]
£
=
c
IS 1E+2
5
3]
Q
=
LL

1E+0 & I I : /
A o AN O N
& & & \»@\ W S
X
LA R R R R R RRRERRRRRRRRRRRRRRRRRRERRRERRRRNI] @

: ©)
Flat (active) ‘Lo

<
wer is better

Penalty of the Opposite Wait Policy

Lower is better

~650,000
= 60 (n 1E+4
=]
m 1E+
E 40 g 1=
P < 1E+2
5 50 s
TR
W o 1E+0
BOLT Intel LLVM BOLT Intel LLVM
W active M passive Flat W active W passive Nested
#pragma omp parallel for num_threads (56) #pragma omp parallel for num_threads (56)
for (int 1 =0; i <B56;i++) for (int I =0; | <56; i++)

#pragma omp parallel for
for (int j=0;]<56;

num_threads (56)

j++) no_comgi, j);

no_comgi);

= How to coordinate threadsignificantly affects the overheads

¢ Large performance penalty discourages users from enabling nesting.

= |s there a good algorithm twansparently support both

flat and nested parallelisfh

26

Busy Waiting in Both Active/Passive Algorithms

BOLT (active) BOLT (passive)
fork join fork join fork join fork join
I I I I I I I
rea - _ - rea |
Schedulera rr@ﬂ—r@ i g Schedulera
rea I I I I I I ‘ I
reat?) ——Heom F—— oo o— :
Scheduler I I I I Scheduler 2 I I na | I
soha® | ——sb{ comp }sb——sb{ comp }-s—— [scheduter -
busy 1 | busy | I | Iswitch switch |
wait Wi't to scheito thread
’ void omp_thread () { \ l void user_scheduler () { \
RESTART_THREAD: while (1) {
comp(); ULT_t *ult = get ULT_from_queue ();
while (time_elapsed () < KMP_BLOCKTIME) { if (ult !'= NULD
if (team->next_parallel_region_flag) execute(ult);
goto RESTART_THREAD; }
} }
}

= Though in both active and passive caslesy enter busy
walts after the completion of threads

¢ Can weamergeit to perform both scheduling and flag checking?
27

Algorithm: Hybrid Wait Policy

4 BOLT (active) BOLT (passive))
fork join fork join fork join fork join
] I I]
sI: (reedillje(r) 0 el SIEZTJ?e? 0
e
hread 2 Scheduler 2
STEredacli 3 - _'I_-> I—»'-p—p [Scheduler 3
cheduersl busy | I busy | I l Lswitch ~ switch I
wait wait to sched to thread j
. void omp_thread () {
BOLT Ifybrid) RESTART_THREAD:
fork join fork join comp();
I I I I while....(ime..elapsed..).< KMEP..BLOCKIIME).{
read O : if (team - >next_parallel_region_flag) i
Scheduler ¢ 'I' [eomp For— 0010 RESTART THREAD: o
= | I Vi ol R Tk S P
> S e o N : _ - _ ! :
Scheduler] =t I I | : (parent_scheduler);
!Trea??l > _____,l_-_,l,_________> Sif (ult '= NULD :
Scheduler I <ol I I I : return_to_sched_and_run (ult); :
rea R }'...................................;
> con . T -
=chedulerd psy ILE": busy wait l } | This technique is not applicable to @Sel J

wait + find next ULT threads since the scheduler is not reveale

¢ [flat]: a thread does not go back to a scheduler.
¢ [nested]: another available ULT is promptly scheduled.

28

Performance of Hybrid: Flat and Nested

o 60

=

(]

£ 40

=

2 20

>

(@)

x

w o [| I |

BOLT Intel LLVM
m active mpassive m hybrid Flat

~650,000
o 1E+4

3,

o 1E+3

=

< 1E+2

S

3 1E+1 II

Q

w 1E+0

BOLT

M active m passive ® hybrid

Lower is better

LLVM
Nested

Intel

#pragma omp parallel for

for (int 1 =0;
#pragma omp parallel for
for (int j=0;])<56;

num_threads (56)

i <56 i++)

num_threads (56)

j++) no_comgi, j);

#pragma omp parallel for

num_threads (56)

= BOLT (hybrid wagolocy) is
always most efficient in both flat

and nested cases.

¢ 2S

adzaasai
so that the runtime can choose

the implementation.

for (int i =0; i <56; i++)
no_comgi);
1e-4 Nested Parallel Regions
(no computation)
)
Qo
£
=
0
5
O
Q
>< L L L
Y‘ S é ‘tu S é é S Bind=spread,unset .é
—e—+++++ Hybrid policy
1E-5
1 10 100
of outer threads (N)

29

SU m mary Of the DeS]gn /Runonab6 -core Skylake server
#pragma omp parallel for num_threads (L)
for (int 1 =0; i <L; i++)
#pragma omp parallel for num_threads (56)
. . . . for (int j=0;]j<D56; j*++)
= Justusing ULT is insufficient no_compl);

=> Three kinds of optimizations: , —=BOLT (aseine)

—e—+ Efficient resource management
++ Scalable thread startup
I —e—+++ Bind=spread
—e—++++ Bind=spread,unset
3. t —e—+++++ Hybrid policy

=

1. Addressscalability bottlenecks
2. ULHriendly affinity

N

: : : e
3. Hybrid wait policyor Nested Parallel Regions
flat and nested parallelisms (no computation)
-- % lE-B
= Our work solely focuses on OpenMP, %
while some of our techniques are gene@c
()
¢ Place queues for affinity of ULTs n 1E-4
¢ Hybrid thread coordination for runtimes
that have parallel loop abstraction.
1E-5
1 10 100

of outer threads (L)

30

Index

1. Introduction

2. EXxisting Approaches
¢ OSlevel threadbased approach

¢ Userlevel threadbased approach
w What is a useftevel thread (ULT)?

3. BOLT for both Nested and Flat Parallelism
¢ Scalability optimizations
¢ ULTaware affinity proc_bing
¢ Thread coordinationvwfait_policy)
Evaluation

5. Conclusion

\= 31

Microbenchmarks

while keeping the
total problem size. w— il

/Runonab56 -core Skylake server
#pragma omp parallel for num_threads (L)

alpha makes the computation size rando

——— Llarge alprﬁ

/Runonab56 -core Skylake server
#pragma omp parallel for

Execution time [s]

num_threads (56)

for (int i =0; i <L; i++){ for (int i =0; i <56; i++){
#pragma omp parallel for num_thLreads (28) int work cycles = get work (i, alpha);
for (int j=0;)<28; j++) #pragma omp parallel for num_threads (56)
comp_20000_cycles(i, j); for (int j=0;j<56; j++)
} comp_cycles (i,j, work_cycles);}
1E+0
1E+0 [" o—O L L 4 o—0——0 L J
1E-1 .
% 1E-1
1E-2 = — o—0—0o—0—0—9o —oo—0 o —0
1E-3 o 1E-2
5
1E-4 S
W 1E-3 ®
1E-5 ®
1E-6 ‘Lower is better 1E-4 ' Lower is better
1 10 100 0.1 1 10
of outer threads (L) Alpha (A)
—e—BOLT (baseline}e—BOLT (opt) —e—GCC —e—BOLT (baselineye—BOLT (opt) —e— GCC
Intel —e—LLVM —o—MPC Intel —e—LLVM —e—MPC
—e— OMPi —e— Mercurium ~ -eeeeeee Ideal —e— OMPi —e— Mercurium seeeeee- Ideal

(Ideal): theoretical lower bound under perfect scalability.

32

Execution time [s]

Microbenchmarks: vs. taskloop

/Runonab56 -core Skylake server //Runonab56 -core Skylake server
#pragma omp parallel for num_threads (56) #pragma omp parallel for num_threads (56)
for (int i =0; i <L; i++){ for (int i =0; i <56; i++){
#pragma omp taskloop grainsize(1) int work_cycles = get work (i, alpha);
for (int j=0;]<28; j++) #pragma omp parallel for num_threads (56)
comp_20000 cycles(i, j); for (int j=0;]j<56; j++)
} comp_cycles (i,j, work_cycles);}
1E-2 1E-1
@,
[}
1E-3 E 1E-2 e—e—e—
.S o o o o o o o o o o
.......... 5
14 TTe " S 1E-3
........... X SR T RN . SEINR GTII. 4T TS SRE SRR
1E5 | T ‘Lower IS better 1E-4 ‘Lower is better
1 10 100 0.1 1
Outer loop count (L) Alpha (A)
—e—BOLT (baselinej-e—BOLT (opt) —e— BOLT (baselinej-e—BOLT (opt)
—e— GCC (taskloop) Intel (taskloop) —e— GCC (taskloop) Intel (taskloop)
—e—LLVM (taskloop)----- ldeal —eo—LLVM (taskloop)------ Ideal
||

Parallel regions of BOLT are fast asaskloop !

33

5
Evaluation: Use Case of Nested Parallel Regions

= The number of threads for outer] :Function call

loops isusually set to # of cores User Applications
o | L_OpenMPparallelized code _|
¢ l.e., if not nested, oversubscription SsiEie ey
does not happen | OpenMPparalIie ode S 1
= However, many layers are e [

OpenMP parallelized, which can e L
. . . . Runtime System
unintentionally result in nesting ¢

OpenMP Runtime System

= We will show two examples.

34

Evaluation 1: KIFMM

= KIFMMY: highly optimized Nbody solver

¢ N-body solver is one of the heaviest kernels
In astronomy simulations.

= Multiple layers are parallelized by Open

¢ BLAS and FFT. KIFMM
= We focus orihe upward phase OpenMP parallelized code
in KIFMM BLAEF-) F?V%
OpgnMP OpgnMP
for (int i = 0; i< max_levels ; i++) parallelized code parallelized code
#pragma omp parallel for :
for (int j=0:j< nodecounts[i]; j++){ SISCI AU S I
[..];
dgem\(...); /I dgem\) creates a parallel region.
}

[*] A. Chandramowlishwaraat al., "Brief Announcement: Towards a Communication Optimal Fast Multipole Method and Its Implicati@asedle SPAA 12, 2012
35

Performance: KIFMM

void kifmm_upward ():
for (int 1 =0; i < max_levels ; i++)
#pragma omp parallel for num_threads (56)
for (int j=0;j< nodecounts [i]; j++){

[..];

dgem\(...); Il creates a parallel region.
}
void dgemy(...): // in MKL
#pragma omp parallel for num_threads (N)
for (int i =0; i <[.] I ++)

dgemv_sequential (...);

= Experiments on Skylake 56 cores.

¢ # of threads for the outer parallel region =

2.
8,-\
2 -
@ Il
+
£ 2 1ommy
ORES
Q_g [}
8O =
o @00
ad

| |
.. 1
0 Higher is better

1 10 100
of inner threads (N)

NP=12, # pts = 100,000
—o—BOLT (opt) —e—Intel (nobind) Intel (true)
Intel (close) —e—Intel (spread) ——Intel (dyn)

Different Intel OpenMP configurations:
nobind=false)}true,close,spreadproc_bind
dyn: MKL_DYNAMIC=true

Note that other parameters & hand tuned
(see the paper).

¢ # of threads for the inner parallel region = N (changed)

= Two important results:

¢ N=1 (flat):performance is almost the same.

¢ _N>1 (nested)BOLT further boosts performance

36

Evaluation 2: FFT in QBox

= QboxT: first-principles molecular}
dynamics code.
= \We focus on thé-FT computation part.
................... il1G) S Il FET backward
2 . ey #pragma omp parallel for
. OpenMP parallelized COdF\ for (int i =0; i <num/ nprocs; i++)
e T E fftw_execute (plan_2d, ...);
LAPACKCALAPACK |EFTW3
BLAS % void fftw_execute (..): //in FFTW3
. : OpenMP []’
L__OpentP paralleized code | i fara"ehzed e || #pragma omp parallel for num_threads (N)
e (e T for (int i =0; i <[.] | ++)
OpenMP Runtime System fiw_sequential (..
MPI
= We extracted this FFT kernel and change

[F.GygE & ! N K QboR A scalzdiB firseJNA y OA LX Sa Y2t SOdzf NJ Reyl YA0a O2RSZé¢ L. a W2@ayan.f2002 F
37

Performance: FFTW3

/I FFT backward

#pragma omp parallel for

for (int i =0; i <num/ nprocs;
fftw_execute (plan_2d, ...);

i ++)

void fftw_execute (...): /l'in FFTW3

[...];

#pragma omp parallel for

for (int 1 =0; i <[.]
fftw_sequential (...);

num_threads (N)
i ++)

—e—BOLT (opt)

Intel (close) —e—Intel (spread) —e—Intel (dyn)
Intel OpenMP configurationsiobind=false)true,close,spreadproc_bind dyn. OMP_DYNAMIC=true

—e—Intel (nobind) —e—Intel (true)

A nprocs = # of MPI nodes
A num (andfftw size) is proportional
to # of atoms.

O, NWHA SOFrLrNWAHA

OFRLrNWA

i astens

1 10

64 atoms / 16 MPI

processes

e

10 100
64 atoms / 32 MPI

processes

Processes

Experiments on KNL 7230 64 cores.

of threads for the outer parallel region = 64
of threads for the inner parallel region = N (changed)

= N=1 (flat):;performance is almost the same

= N>1 (nested)BOLT further increased performance

1 10 100
64 atoms / 48 MPI

N
X axis: # of inner threads (N)
Y axis: relative performance (BOLT + N=1: 1

4 4

3 3
2 2
oSSR L et
0 0 e
100 1 10 100 1 10 100
96 atoms / 16 MPI 128 atoms / 16 MPI
processes processes
4 4
3 3
2 2
1 g Pin
0 0
100 10 100
96 atoms / 32 MPI 128 atoms / 32 MPI
processes processes
4 4
3 3
2 2
1 1
0 0

1 10 100
128 atoms / 48 MPI
processes

1 10 100
96 atoms / 48 MPI
processes

. Higher is better

38

Index

1. Introduction

2. EXxisting Approaches
¢ OSlevel threadbased approach

¢ Userlevel threadbased approach
w What is a useftevel thread (ULT)?

3. BOLT for both Nested and Flat Parallelism
¢ Scalability optimizations
¢ ULTaware affinity proc_bing
¢ Thread coordinationvwfait_policy)

Evaluation

5. Conclusion

\= 39

Summary of this Talk

I OpenMP-parallelized code
Aokl A
o

= Nested OpenMP parallel regioage commonly
seen in complicated software stacks. s oo e
=> Demand foefficient OpenMP runtimes
to exploit both flat and nested parallelism

= BOLTan lightweight OpenMP library over ULT.
¢ Simply using ULTs is insufficient:

w Solvescalability bottlenecks the LLVM OpenMP runtime
w ULFHriendly affinity implementation

w Hybrid thread coordination technigu®e transparently support
both flat and nested parallel regions.

= BOLT achieves unprecedented performance for nested parall
regions without hurting the performance of flat parallelism.

40

Thank you for listening!

Artifact:

https://zenodo. orq/record/3372716
(DOI: 10.5281/zen0d0.3372716)

= BOLThttp://www.bolt -omp.org

Q&A (as a software): | |
¢ What is the goal of the BOLT projec: OpenMP L [[o | ouns [opre

aver ULT Thread Thread Thread Thread

w Improve OpenMP by ULTSs: egone) |
¢ 1. enrich OpenMP tasking features with least overh?a S e
¢ 2. minimizing overheads of OpenMP threads, and 3. more.

¢ How to use it?

w BOLT is a runtime library: no special compiler is required.
GCC/ICC/Clang + LD LIBRARY_ PATH+=${BOLT INSTALL_ PATH} worl

C Is BOLT stable? Much engineering efforts for ABI compatibility and stabilify.

———

w Regularly checked with LLVM OpenMP tests (GCC 8.x, ICC 19.x, and Cla
¢ What OpenMP features are SUppOrted’iEUtulrEen\r,]v;rrlléetaskschedullng]

)) A MPI+OpenMmteroperability
w OpenMP 4.5 including task, _

task depend, and offloading.

'\ Thisresearchwassupportedby the ExascaléomputingPr] t(l7 SG20-SC)a joi tp ojectof the U.S Departmentof 9 y § NB
E (C |: Officeof Sci nceandN ationalNuclearSecurityAdministration,respon: bld deliveringa capableexascaleecos yt mincluding
\ software, applicat and hardware technology,to suppor nh eyl U Aékaé@lﬁ: mputing imperative This archis in
ExASD TRG SROUECT partict I rits bp oject tn ScalingdpenMPRwith LLVnfor Exascal@erformanceand portability (SOLLVE)

N B_OLTs_part of the ECFSOLLVRroject https: //WWW bnl.gov/compsci/projects/SOLLVE/

41

